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Abstract - Second Annual Technical Report
(7/1/90 - 6/30/91)

THIS SECOND ANNUAL TECHNICAL REPORT PROVIDES RESULTS OF RESEARCH UNDER-
TAKEN IN THE PERIOD 7/1/90 - 6/30/9t. THEORETICAL RESEARCH WAS CONDUCTED ON

(A) LASER-ASSISTED ELECTRON-(EXCITED) ATOM COLLISIONS,
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(B) ELECTRON-EXCITED ATOM COLLISIONS,

e +A" —e” +4AY
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AND,

(C) TERMOLECULAR ASSOCIATION.

A+B+M — AB+ M

DETAILS OF THIS RESEARCH ARE INCLUDED AS APPENDICES (A)-(D) OF THIS REPORT.
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1. ACCOMPLISHMENTS DUE TO AFOSR SUPPORT :

PRINCIPAL INVESTIGATOR: M. R. Flannery
School of Physics, Georgia Institute of Tezhnology
Grant AFOSR-89-0426, Period 7/1/90 - 6/30/91
Project Task: 2301/A4

1.1 RESEARCH OBJECTIVES AND DEVELOPMENTS

The objective of the present research program is to formulate, develop and implement new theoretical
descriptions of the following atomic and molecular processes (A-C) below.

(A) Laser-Assisted Collisions: A new theory of laser-assisted electron-(excited) atom collisions,

e+ A+nhv — e + A" + mhy (1)

in which the dressed states of the atom A in the laser field are closely coupled and the Volkov states of the
projectile electron in vhe laser field are included has been developed by M. R. Flannery and P. H. G. Smith.
One paper has already been published, a second is in process of publication and a third has been submitted
for publication. See Appendices (A)-(C).

(B) Termolecular Recombination: The transport-collisional set of Master equations for Texmolec-
ular Recombination,

A+B+M - AB+ M (2)
as a function of gas density has been developed by M. R. Flannery. See Appendix (D).

(C) Angular Momentum Changes in Collisions with excited atoms: Work is progressing on
the cross secticns for angular momentum changes,

A+ B(nt) » A+ B* +e " (e.0)

in heavy-particle and electron-atom (e-B) collisions where the target atom is initially in an excited state.

The cross sections for nf — €f' collisional transitions increase as £ is increased until a maximum £,
is attained after which the cross sections decrease preciptously. M. R. Flannery and A. Haffad have shown
that this effect not only can be explained by a previous quantum description of Flannery and McCann, but
also by classical scattering.




1.2 RESEARCH COMPLETED DURING CURRENT PERIOD (7/1/90 - 6/30/91)

Within this yearly period, the following projects were investigated, completed and written up for pub-
lication:

A. Ph. D. Thesis: ‘A Semiclassical Treatment of Laser Assisted Collisions in a Soft-Photon Weak-Field
Regime’, by P. H. G. Smith, Georgia Institute of Technology (Ph.D. awarded 6/3/91)

B. Papers in Press and submitted for publication:

1. ‘Electron-Atom Collisions in a Laser Field’, by P. H. G. Smith and M. R. Flannery, Nucl. instr.
Meths. Phys. Res. B 56/57 (1991) 166-9. Appendix A.

2. ‘ELectron-Hydrogen Collisions in a Laser Field’, by P. H. G. Smith and M. R. Flannery, J. Phys. B:
At. Mol. Opt. Phys. 1991 (:n press), Appendix B.

3. ‘Electron-Hydrogen Collisions with Dressed Target and Volkov Projectile States in a Laser Field’,
by P. H. G. Smith and M. R. Flannery, J. Phy. B: At. Mol. Opt. Phys. 1991 (submitied for publication),
Appendix C.

4. ‘Transport-Collisional Master Equations for Termolecular Recombination as a function of Gas Den-
sity’, by M. R. Flannery, J. Chem. Phys. 1991 (in press Oct. issue), Appendix D.

1.3 RESEARCH COMPLETED DURING PREVIOUS PERIOD (7/1/89 - 6/30/00) AND
WRITTEN UP AND PUBLISHED DURING CURRENT PERIOD
(7/1/90 - 8/30/91).

1. ‘Recombination Processes’, M. R. Flannery in Molecular Processes in Space, ‘Physics of Atoms and
Molecules’ series, edited by T. Watanabe , I. Shimamura, M. Shimizu and Y. Itikawa (Plenum Press, London,
1990) Chapter 7.

2. ‘Electron Collision Cross Sections Involving Excited States’ E. J. Marsky in Noneguilsbrium Processes
tn Partially Jonized Gases, NATO ASI series B: Physics vol. 220, edited by M. Capitelli and J. N. Bardsley,
Plenum Press 1990, pages 349-55.

3. ‘The Issue of Basis Set Size in ¢~ + H(1s — 2s, 2p) Collisions’, E. J. Mansky and M. R. Flannery, J.
Phys. B: At. Mol. Opt. Phys. 23 L501-507 (1990).

4. ‘Polarization Fractions for the 2! P, 3! P and 3! D states of Helium’ E. J. Mansky and M. R. Flannery,
J. Phys. B: At. Mol. Opt. Phys. 23 3987-92 (1990).

5. ‘The Multichannel Eikonal Theory of Electron-Hydrogen Collisions 1. Excitation of H(1s)’ E. J.
Mansky and M. R. Flannery J. Phys. B: At. Mol. Opt. Phys. 28 4549-72 (1990).

6. ‘The Multichannel Eikonal Theory of Electron-Helium Collisions I. Excitavion of He(1!S)’ E. J.
Mansky and M. R. Flannery, J. Phys. B: At. Mol. Opt. Phys. 23 4573-4604 (1990).

7. ‘Electron-Metastable Helium Differential and Integral Cross Sections’ E. J. Mansky and M. R.
Flannery, J. Phys. B: At. Mol. Opt. Phys. in press

8. ‘Indirect Coupling Mechanisms and Stokes Parameters fo1 Electron-Atom Scattering’ E. J. Mansky
and M. R. Flannery, J. Phys. B: At. Mol. Opt. Phys. in press

Above publications nos. 1 and 5-8 were included as Appendices B-F of the previous Annual Technical
Report GIT-89-001 for the pericd 7/1/89 - 6/30/90 . Six (6) reprints of the first six papers (section 1.3
nos. 1-6 above) are enclosed separtely with this annual report to AFOSR under report numbers GIT-89-002,
-603, -004, -005, -006 and -007, respectively. Reprints of the remaining papers nos. 7 and 8 will be sent to
AFOSR when available.




1.4 SUMMARY: PAPERS PUBLISHED AND IN PRESS

A total of twelve (12) papers have either been already published (as detailed in sections 1.2 no. 1 and
1.3 nos. 1-6) or are currently in press (as in section 1.3 nos. 7,8 and in section 1.2 nos. 2,3 and 4), or have
been submitted for publication (section 1.2 no. 3) during the two years (7/1/89 - 6/30/91) of the current
AFOSR Grant. Reprints of all of the above papers will be sent to AFOSR.

In addition, two Ph.D. thesis :

1. Termolecular Ion-Atom Association of Rare Gase Ions in Rare Gases by M. S. Keenan
(Ph.D. awarded 3/17/90)

and,

2. A Semiclassical Treatment of Laser Assisted Collisions in a Soft-Photon Weak Field
Regime by P. H. G. Smith (Ph.D. awarded 6/3/91)

have been accomplished due to AFOSR support. Copies of these theses will also be sent to AFOSI:.




2. PAPERS PRESENTED AT SCIENTIFIC MEETINGS (7/1/90 - 6/30/91)

1. ‘Electron-Atom Collisions in a Laser Field’, P. H. G. Smith and M. R. Flannery, Bull. Ames. Phys.
Soc. 86 No. 2 (1991) 188

2. ‘Angular Momentum Changes in Collisional Ioniza..on’, A. Haffad and M. R. Flannery, Bull. Amer.
Phys. Soc. 36 No. 2 (1991) 188

The above two papers were presented at the 437 Annual Gaseous Electronics Conference, 16-19 October,
1990, Champaign-Urbana, Illinois.
3. ‘Functional Parallelism and Atomic Scatiering Theory’ E. J. Mansky, to appear in the Proceedings
of the Fifth SIAM Conference on Parallel Processing for Scientific Computing (SIAM Press 1992), 25-27
March 1991, Houston Texas.

2.1 ABSTRACTS OF PAPERS PRESENTED

Abstract of Contributed Poster Paper presented at the Fifth SIAM
Conference on Parallel Processing for Scientific Computing
March 25-27, 1991, Houston , Texas

Functional Parallelism and Atomic Scattering Theory

The parallelizability of the numerical solution of systems of N cou-
pled first-order iinear partial differential equations, which arise in the
solution of Schrédinger’s equation in electron-atom scattering, is in-
vestigated. In particular, an optimal strategy is outlined for paralleliz-
ing the solution of systems of coupled 1*-order PDE’s by balancing
the competing demands of scheduling (ie. load balancing), granularity
and computational intensity of the algorithm. In this regard, the al-
gorithmic phase diagram of Hockney proves instrumental in choosing
which type of numerical technique (ie. rational extrapolation, Runge-
Kutta, predictor-corrector) is "best” depending on the number of cou-
pled equations N and global error tolerance chosen. Algorithmic phase
diagrams and Hockney numbers (74,3, $1/2, f1/2) will be preserted for
the solution of N coupled PDE’s (N = 20 — 100) which arise in the
semi- classical multichannel eikonal theory of inelastic electron-atom
scattering. Work supported by AFOSR under grant no. AFOSR-89-
0426.

E. J. Mansky

School of Physics

Georgia Institute of Technology
Atlanta, Georgia 30332-0430.




Papers Presented at the 43rd Annual Gaseous Electronics Conference,
Urbana-Champaign, I1linois, 16-19 October, 1990

D-7 Electron-Atom Coilisions in z Laser Field.* Philip.H.G
Smith and M.R.Flannery, Georgia Institute o{ Techncl..o,. A semi-
classical Floquet approach is used to solve exactly, the Schrodinger equa-
tion for the laser/hydrogen interaction in a soft photon weak-field limit,
to give dressed states of the atom in the laser field. Perturbative dress-
ing is shown to provide an incomplete description, and cannot predict
the distinctive features of the Floquet approach. Electron-hydrogen
collisions in a laser field are then described via a multichannel eikonal
treatment, in which the dressed states are closely coupled. Cross sec-
tions for 15-2S and 1S-2P, excitations are presented as a function of

field strength and impact energy, and compared vith the Born-wave
result.

* Research supported by AFOSR-89-0426.

D-8 Angular Momentum Changes in Collisional Ionization®,

A. Haffad and M. R. Flaonery, Georgia Institue of Technology -
Single and Double Differential cross sections for ionization in e - H(al)
and H(1s) - H(nl) collisions are reported as a function of impact energy
E, final energy ¢ and angular momentum I’ of the ejected electron.
This process is assumed to occur via an energy-changing and

angular momentum-changing binary collision between the Rydberg
electron in state nl and the projectile e or H(1s).

The atomic projectile can also be excited. Systematic rends in the
variation of the classical cross sections with final angular momentum V'
are discussed and are in accord with a previous quantal treatment!.

*Research supported by U.S. Air Force Office of Scientific Reasearch
under Grant No. AFOSR-89-0426.
IM. R Flannery and K. McCann, Phys. Rev. 19 (1979) 2206.




3. PERSONNEL INVOLVED

1. Professor M. R. Flannery - Principal Investigator

2. Du. E. 3. Mansky - Research Scientist II

3. Mr. P. H. G. Smith - Graduate Student (Ph.D. completed 6/3/91)
4. Mr. A. Haffad - Graduate Student (Ph.D. completed 8/16/91)

5. Mr. X. Qi - Graduate Student

4. SPECIAL HIGHLIGHT: LASER ASSISTED ELECTRON-ATOM COLLISIONS

A new theory of laser assisted electron-atom collisions has been formulated , developed and applied to,

e” + H(1s) + Nhw — €~ + H(2s,2po, 2ps1) + N'hw

The laser can perturb both the bound atomic electrons as well as the incident projectile electron. The first
effect is acknowledged by a semiclassical Floquet approach used to dress the excited states of hydrogen in
the laser field. This approach is compared to dressing by the traditional Perturbative approach which is then
shown to provide an imcomplete description of the laser interaction and which cannot predict the distinct
features provided by the Flogquet approach.

The second effect of the laser interaction on the projectile electron is acknowledged via Volkov dressed states
for the projectile. These states are shown to exert significant influence on the cross sections for individual
state-to-state transitions which involve absorption or emission of a specified number of photons. They

however have only a negligible effect on the cross sections obtained by summing over all absorptions and
emissions.




APPENDIX A

Electron-Atom Collisions in a Laser Field

P. H. G. Smith and M. R. Flannery
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North-Holland

Electron—atom collisions in a laser field

Philip H.G. Smith and M.R. Flannery

Schont of Pincs, Georata Insutate of Technology, Atlunta. G4 303320420, LS4

Cross sections for the 1S-2S and 1S-2P, transttions n laser assisted e-H(1S) voilisions are calculated in both the multichannel
etkonal and the Born-wave treatments as a tunction of impact energy and laser {ield ntensity and phase. The laser considered 1 a
monotoni. plane polanzed CO, laser (photon energy = 0.117 ¢V). with the polanzation direction parailel 10 the tnittal projecule
veloctty  Floquet dressing of the hvdrogen atom in the soft-photon weak-field mut reveals a concise description of the laser assisted
electron-atom collision. This model also links the nucroscopic detail of the individual colhisions with the macroscopic considerations

of experimental analvsis.

1. Introduction

The work reported tn this paper is a study of the
influence of the laser field on electron-atom collisions
in the soft-photon weak-field regime. In this regime the
photon energy 15 a lot less than the energy required to
ionize the atom. and the field strengths can always be
considered as a perturbation to the field of the nucleus
on the bound electrons. The effect of coupling a laser
field to a projectile electron n this regime during a
collision with an atom has been well explained in a
number of studies {1). The effect of a laser field on the
target atom, however, has met with a lot less success.
This is due to the off-diagonal elements introduced into
the Schrédinger equation for an atom in a laser field,
which not only provide couplings between eigenstates of
the isolated atom, but simuitaneously involve the ab-
sorption or emussion of a photon. In this model the
off-diagonal elements are dealt with by creating dressed
atomic states for the atom in the laser field by a
semiclassical Floquet approach [2). These dressed states
are then used to solve the electron-hydrogen collision

e~ + H(1S) + Vhw — e+ H(2S. 2P, 2P, ) + NAw.
(1)

This model can include the laser-projectile tnterac-
tion by using the well-known Volkov states. As is shown
in ref. [3], the Volkov states for the range of impact
energies considered 1n thus work - 50 eV. 100 ¢V and
200 eV - provide a wide range of high order multipho-
ton transttions. But as ts also shown in ref. {3). when the
state-to-state cross sections are summed over an increas-
ingly wider range of projecule energies. the full treat-
ment which includes Velkov dressing 1s found to con-
verge on the treatment that neglects the laser~projectile
interaction. This finding has been used to jusufy pre-

senting state-to-state cross sections in this paper, calcu-
lated when neglecting the laser-praojectile interaction.

2. The laser~atom coupling

The starting atoruc Hamultonian 1s [4)
Hyy(rot)=Pi+ V. (r)+ Eyersm(wt+8,) (2)
= Hy+ Vg,

where H, 1s the field-free atomic Hamiltoman and £, s
the electric field strength = 4,w/c expressed in terms of
the laser frequency w. The phase shift s §, which is
explained in section 4 of this paper. This Hamiltonian
can be seen to be time dependent. By expanding into
Floquet states and diagonalizing a restricted version of
the resultant infinite matnx [3.5), time independent
dressed states can be obtained that exactly solve eq. (2).
The time dependence has been removed by allowing for
absorption and emisston of photons of energy. so that
the new dressed atomic states can be used to solve
collisional problems 1n a ume independent manner di-
rectly analogous to field-free atomuc states. The cost of
removing the time dependence 1s an infinite set of
atomuc states and energy levels

E,= ¢+ nhw. (3a)
| Ty =0 dgmlte. n+m). (3b)

a m

where L, is a summation over field-free atomuc <tates
¢, and L, 1s a surnmation over their Floquet expan-
ston. It is emphasized that n vanes across the range
— 0 to %, and so provides an infinite set of periodic
dressed states.

0168-583X/91,/503.50 © 1991 - Elsevier Science Publishers BV (North-Holland)




PHG Smuth. M R Flunnen

3. e ~+ H(1S) + .Vhw collision

Now that dressed atomic states have been attaned.
thev are used to solve the tme dependent laser per-
turbed collistonal Hamultoman

H=[1Pi+H, (r. )+ V(R. )]

£
< Y I, explimd_). (4)

"=

- x

in a ume independent manner. The summation over
Bessel functions appears from the Voikov dressing of
the projectile electron. As mentioned earher. this has
been weil explained by others and so will not be dealt
with 10 detail 1n this paper. Any expeniment detects the
products of the collision outside the region of the laser
field where A, 4= H,. To obtain results comparable
with experimental observations this model calculates
the state-to-state cross sections from the measured”
transition amplitude T, taken with respect to the
field-free atomuc states. Eq. (4) provides a solution to
the “dressed” transiuon amplitude 7,, taken with re-
spect to the Floquet dressed atomuc states. By projecting
the dressed states I » on to the field free states ¢y it is

2. A 1S-2S BORN CROSS SECTIONS
FOR éw SET TO
0=0,a=225, + =45,

x = 67.5 AND ¢ = 90 DEGREES
gl
¥
M
X
&
[42]
Zeo
S e
3
%]
12]
na
& o
<
[
Q
- @50e¥
e
1ooov
ZOOCV
o
°
O 0 12 ] lG 0 20 0
ELECTRIC FIELD STRENGTH (au) 0

. Elecrron—atom collisems i o waser teld

16~
posstble to write the “measured™ transinon amplitude

in terms of the "dressed™ transttion amphitude
Tu=LX L] ol

[io, - T. J,explimd ).
o

(3)

The “measured”™ transuon amphitude can be Jdivided
into two dintinet parts (D e 4L ey or T J, de-
scribes the collistonal tranvition between dressed states
of the atom: (2) (4. hw) or the projection o, [,
describes the laser-atom interaction hetore and alter
the collisional event (e. 4. Aw) There is no analogous
laser-projectile interaction (e. Aw) in this model Both
these parts allow for absorption and emussion of pho-
tons through interactions with the laser field. This model
can be seen to give a very concise description of the
laser assisted electron-atom collision. with all three
interactions (e. A. hAw). (A. hw) and (e. he) as
described recently (6). included exactiy.

4. The dipole approximation

This model is based upon a typical crossed beam
expentment. where a projectile electron beam. a target

o, B: 15-2P0 BORN CROSS SECTIONS
FOR 6w SET TO
0=0,4=225, +=45,
x = §7.5 AND o = 90 DEGREES

w oV

o

00

200
-4
*10

4.0 80 20 180
ELECTRIC FIELD STRENGTH (au)

0.0

Fig. 1. Cross section vs laser field strength. for third order Floquet dressed hvdrogen atoms. in laser assisted ¢ + H(1S) collisons,
using 2 Born-wave treatment. (3) 15-2S and (b) 15-28, cross secttons Cross sections are compared over a range of phases and
impact energues.
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2 1S-2S EIKONAL CROSS SECTIONS 2,  15-2P0 EIKONAL CROSS SECTIONS
°1  FOR 4w SET TO FOR éw SET TO
b 52,2225 - = 45, 0=0,2=225 += 15,
x = 67.5 AND ¢ = 90 DEGREES <= 67.5 AND © = 90 DEGREES
0 (e}
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Fig. 2. Cross section vs laser field strength. for third order Floquet dressed hydrogen aloms, tn laser assisted e~ + H(1S) collisions.
using a multichannel Eikonal treatment. (a) 1S-2S and (b) 1S-2P, cross sections. Cross sections are compared over a range of phases
and impact energes.
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Fig. 3 15-2S and 15-2P, cross sections vs laser field strength. for thued order Floquet dressed hydrogen atoms. 1n laser assisted
¢~ +H(1S) collisions. using (a) Born-wave and (b) multichannel Eikonal treatments. The cross sections are averaged over &, tn the
range 0° t0 90° and compared over a range of impact energies.




atomic beam and a laser beam all cross at one point in
space. with the vector potenual for the laser field ex-
pressed as

4 =& Ay cos(ker+wl+3,). (6)

At the atomic level. a dipole approximation can be used
in all calculations so that eq. (6) can be reduced to

d=¢ 4 cos({wt +8_). (7)

However. at the macroscopic level. the dipole approxi-
mation does not hold across the full width of etther the
projecttle or the atomuc beams. This can be dealt with
by varying the phase factor 8 in 4. The wavelength for
the electromagnetic radiation considered n this work 15
of the order of 107° m. Hence any experiment will
observe a range of collisions over many wavelengths
and time periods of the laser. To predict the expenimen-
tal cross sections 1t 1s thus necessary to take an average
over a range of 8, from 0° to 360°,

1 2
Cexpeniment = T /0 0( 6:.: ) d( 8u ) (8)
5. Results

As explained in the introduction, the Volkov dress-
ing of the projectle states provides little additional
information to the summed state-to-state transitions,
Hence the resuits presented here neglect the laser-pro-
Jectile interaction, and are still considered to be a good
approximation. All Floquet dressed states are taken to
third order in approximation, which allows for multi-
photon couplings of up to three photons in height.
Third order 1s used since it 1s shown that convergence in
the cross sections 1s reached by this time [5].

Numerical calculations of the dressed transition am-
plitudes of eq. (5) are based on a Born-wave treatment
and a multichannel Erkonal treatment [7]. The restricted
basis set - 1S, 2S, 2Py and 2P,, - is used in the
dressing of the atomic states, which in turn provides the

P.H.G Smuth, M.R. Flannery / Electron-atom collisions in a luser field 169

basis set used in the multichannel ¢ikonal approxima-
tion. The axis of quantization 1s along the direction of
incrdence of the projectile electron. and 1s also taken a5
the direction of polarization of the laser field.

Fig. 1 shows the 1S-2S and 1S-2P, cros sections
calculated by the Born-wave treatment for a range of &_
from 0° t0 90° The same set of curves is repeated over
the next 270° Hence the predicted experimental cross
section need be averaged only over the reduced range
8.=0° 10 90°. Fig. 2 shows the same 1$-2$ and
IS-2P, state-to-state cross sections calculated by the
Eikonal treatment. As can be se¢n. the two treatments
give very simular results. Fig. 3 shows the averaged
18-2S and 1S-2P, cross sections. (a) calculated in the
Born-wave approximauon. and (b) calculated in the
multichannel eikonal approximation.
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ELECTRON-HYDROGEN COLLISIONS IN A LASER FIELD

Philip.H.G.Smith and M.R.Flannery

School of Physics

Georgia Institute of Technology, Atlanta, GA, 30332-0430, U.S.A.

ABSTRACT: The non-perturbative Floquet method is used to provide the dressed states
of a hydrogen atom in a laser field in the soft-photon weak-field regime. These dressed
atomic states then provide a basis set expansion for use within a consistent semiclassical
Multichannel Eikonal Treatment of laser assisted e™-H(1S) collisions. The variations with
field strength of the 1S-2S and 15-2P, state-to-state cross sections are presented. Special
attention is employed in correlating the time frame of the laser field with the time frame
of the relative orbit of the collisional species, and this is shown to require the inclusion of
a phase shift 6, within the vector potential of the laser field. This inclusion is important

when comparing with experimental results.

1.INTRODUCTION

The Floquet treatment has already been successfully employed (Chu 1985, Potvliege
and Shakeshaft 1991) in calculations of laser induced multiphoton ionizations, where it
provides dressed states for an atom in a laser field. That (perturbative) dressing of
target states can have important consequences in laser-assisted scattering was illustrated
by Byron and Joachain (1984). These dressed states are useful, not only for laser induced

phenomenon, but also as a collisional basis set for laser assisted collisions. In this role they
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are in fact very appealing, since the Floquet treatment naturally lends itself to a time-
independent analysis, and hence are compatible with present field free scattering theories.
Despite the apparent applicability of this approach, work along these lines has only just
recently appeared (Sharma and Mohan 1990, Smith and Flannery 1991a, Burke et al 1991).
Byron and Joachain (1984) have illustrated that perturbative dressing of the target states
can have important consequences in laser-assisted scattering. Floquet dressing however

provides a more complete description (Smith and Flannery 1991b).

This short paper provides an outline of the research (Smith 1991) being conducted
by the authors on e™-H(1S) collisions, using a Floquet dressed basis set for a hydrogen
atom in a laser field. A short paper has previously been published (Smith and Flannery
1991a) but the range of the electric field strength, over which collisional cross sections
are calculated, has now been extended to provide greater insight into the role of the laser
field in the collision. A more detailed account is presently under preparation. The work
described here centers on the laser perturbation of the atom alone, and attempts to probe
its exclusive effect by neglecting the laser perturbation of the projectile electron. In a later
paper, the laser perturbation of the projectile will also be included via the use of Volkov
dressed states but these will be shown to have a negligible effect on the state-to-state cross

sections, within the range of electric field strengths studied in this work.

2. THEORY OF LASER ASSISTED COLLISIONS

The starting point of a discussion of laser assisted collisions is the laser perturbed
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Schrodinger equation

ih gy = [%Pé + ) Hpri + Afe)f + V(r) + V(R,1) |9 (1)

The channel coordinates, (Pgr,R), represent the momentum operator and the position
vector for the projectile. The internal coordinates, (p,r) represent the momentum operator
and the position vector for each bound electron. The electronic coordinates will be denoted
collectively by r, ¢ is the speed of light, u is the projectile-target reduced mass, V(r) is the
internal potential for the bound atomic electrons and V(R,r) is the external projectile-
target interaction potential.

After the usual dipole approximation, the vector potential for a monochromatic plane

polarized laser of frequency w is
A = A, cos(wt + 6,) (2)

It is customary, especially in multiphoton ionization, to omit the phase shift é,, and to just
write the vector potential in the form A, coswt or A,sinwi. However for semiclassical
collision theory there is already a time frame of reference imposed upon the collision,
namely the time along the relative trajectory of the collisional species. The time t = 0
is usually defined at the point of closest approach between the projectile and the target,
ie the orbit’s passage through the periapsis. Thus, if the vector potential were used in
the form A, coswt, it would indicate for each e-atom collision that the laser field was at
a maxima of its cycle at the point of closest approach, as indicated by the dotted curve
in the diagram of Fig.1. This is in general not true, so that it is necessary to adopt the

phase shift &, in order to synchronize the time-zero of the laser field with the time-zero of
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the collisional e-atom orbit. The vector potential of eq.(2), used in these calculations, is
therefore shifted in phase by é,,, from A, coswt, as shown by the solid line in the diagram
of Fig.1. The phase shift §,, varies between 0 and 27. Bachau and Shakeshaft (1984) have
explicitly acknowledged the effect of the phase shift for excitation in H* — H(1s) scattering
in a nearly resonant laser field.

On omitting the projectile dependent terms from the laser perturbed Schrédinger
equation eq.(1), the time-independent Floquet prescription (Shirley 1965, Sambe 1973,
Chu 1985) yields the matrix equation.

2[ (€ + nhw)dpabnam + Mhabnm=m—1 = Hzobn=m+1 |Afe = QuAT; (3)
n

The field free atomic energy levels e, and the laser induced off-diagonal couplings
,uga = —-i%(qﬁgleo - T|¢q), between field free atomic states, are known so that the matrix
can be diagonalized to obtain the new dressed basis set. This invclves determining the

“Quasi” energies ¢}, and the dressed atomic states

-*ZS‘AQM [n) (4)

which are written in terms of the above corabination of field free atomic states |¢,) and

periodic states |n) = %!

. These new dressed atomic states form an orthogonal, time-
independent basis set, which provides a medium in which any time-independent field free
scatiering theory may be applied to laser assisted collisions. However the price paid for this
formal simplification is the introduction of an infinite set of periodic solutions, demanded

by the Floquet prescription.

Using the Lippman S-hwinger equation, it is relatively straightforward (Smith 1991)
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to obtain the “dressed” transition amplitude

Tpq = ($p|V(R.1)ithy) exp(i(ki~ky)-R) 6(Qp + 57k + (n—m)hw — Qg — 5-k7) (5)

taken with respect to the dressed atomic states ¢,. This “dressed” transition amplitude
describes collisional transitions between the dressed atomic states, and includes all of
the possible photon absorptions and emissions that can occur during such transitions.
However the “dressed” transition amplitude, eq.(5), pertains to the wrong physical basis
set for comparison with field free collisions and experimental results. Rather a transition
amplitude taken with respect to the field free atomic states, @4, is required. Since the set of
dressed atomic states, obtained via the Floquet prescription, is assumed to be a complete
and normalized set it is possible to form the projection operator Zq |¥g}(1pg| = 1. On

using this projection operator, the “measured” transition amplitude

Tsa = (®p|V(R,r)|®s) }:Z (68, 01¥p) Tpg (¥g16a,0) (6)

taken with respect to the iield free atomic states, may be written in terms of the “dressed”
transition amplitude T}, , taken with respect to the dressed atomic states. Writing the
“measured” transition amplitude, T4, in terms of the “dressed” transition amplitude, Ty,
in this manner effectively allows for a transition between the dressed and the field free basis
sets. Hence semiclassical scattering theories can be applied in a time-independent manner
and the calculated transition amplitudes then transformed to the field free “measured”
basis set in order to yield the state-to-state transition cross sections. It can be shown
that the calculated cross sections allow for laser photon absorption and emission and also

Raman photon emission (Smith and Flannery 1991b). Both the probability amplitudes
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and the photon absorption and emission locations during the collisional sequence of events
are tracked by eq.(6).
Since the vector potential (2) can only be defined to within a phase shift é,, as in

Fig.1, it is therefore necessary to take the following average

1 27
Oexperiment = Q;A a‘(‘sw)d(éw) (7)

by o over the range of é, from 0° to 360°. This proves to be an important consideration.

RESULTS: ¢~ + H(1S) + Nhw — ¢~ + H(2S,2P,) + Mhw

State-to-state cross sections for the 15-2S and 1S-2P, transitions, in laser assisted
e”-H(1S) collisions, are calculated by the Multichannel Eikonal Treatmen. us a function
of impact energy and laser field intensity. All cross sections reflect a summation over
the state-to-state cross sections, for all possible final projectile energies, consistent with a
specified initial relative energy. Changes in the final projectile energy arise from photon
absorption and emission. The laser considered is a monotonic, plane polarized CO, laser
(hw = 0.117eV), with the polarization direction parallel to the initial projectile velocity.
The restricted basis set - 15, 25, 2Py and 2P - is used in dressing the states, which
in turn provide the basis set used within the Multichannel Eikonal Treatment. The axis
of quantization is along the direction of incidence of the projectile electron and is also
taken as the direction of polarization of the laser field. Convergence in the cross sections is
reached (Smith and Flannery 1991b) by a third order approximation to the dressed atomic
states and justifies the use of a third order approximation here.

Cross sections versus field strength for 15-2S and 1S-2P; transitions are presented in
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Fig.2, (a) and (b) respectively, for Floquet dressed hydrogen atoms. These cross sections
are compared over a range of phase shifts from §, = (° to 90°, since cross sections for
8. between 90° and 360° are found to be a repeat of the curves shown. I{ can be seen
that the cross sections exhibit a very dramatic phase dependence over the field strength
shown. The 6, = 0° curve exhibits two stationary points, while the é, = 90° curve
exhibits only one stationary point. A model purporting predictions of experimental results
must take, as explained earlier, an average of the cross sections over the range of phases
from §,, = 0° to 360°, or the reduced range of é, = 0° to 90°. Cross sections after such
averaging are presented in Fig.3a where it is immediately apparent that the 1S-2S cross
section never crosses the 15-2Pg cross section. This non-crossing is very striking when
compared to the percentage 2P component of the dressed state S (dressed 25 state) and
the dressed state P (dressed 2Py state) presented in Fig.3b. It is evident that the dressed
2S state is gaining an increasingly 2P, character as the electric field strength increases,
thereby raising the 15-2S cross section at the expense of the 1S-2P; cross section. But
because of the infinite set of periodic Floquet states the 1S to dressed 2S cross section is
increasingly contributing to the “measured” 1S-2P cross section, and hence prevents the
“measured” 15-2S cross section from exceeding the “measured” 1S-2P¢ cross section. The
reasons behind this phenomenon are explained in greater depth in a later paper (Smith

and Flannery 1991b).

4.CONCLUSION

The Floquet prescription used to obtain the dressed collisional basis set, has been

found to yield a very concise description of the role of a laser field in collisional processes.
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The overall semiclassical approach is consistent in that both the laser and the electron
perturbations are described semiclassically. This des.ription includes both the probability
amplitudes and locations of photon absorption and emission during the collisional sequence
of events, and are summarized by the descriptions (A,fiw) and (e,A,iw) as given by Newell
(1990).

This work has demonstrated the significant dependence, of the collisional cross
sections, on the phase shift é, included within the vector potential for the laser field.
This phase has been found necessary to synchronize the time-zero of the laser field with
the time-zero of the collisional orbit. It is suggested that any theoretical model which
attempts to predict experimental results, must take an average of the phase dependent
cross sections over a range of phases from §é, = 0° to 360°. With this averaging it is
shown, in Fig.3a, that the 15-2S cross section rises up to, but does not exceed, the 1S-2P,
cross section in laser assisted e”-H(1S) collisions. This feature should be experimentally

observable with present day technologies.
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FIGURE CAPTIONS

Figure (1): Vector potentials A, cos(wt + 68,) and ....... . Ao coswt, for a

monotonic plane polarized laser field of frequency w, are shown positioned in time relative

to the orbit’s pericenter at time t = 0.

Figure (2): Cross sections vs field strength for 1S-2S and 1S-2P, transitions, (a) and
(b) respectively, in laser assisted e™-H(1S) collisions using third order Floquet dressed
hydrogen atoms and a Multichannel Eikonal Treatment. The cross sections are presented

over a range of phase shifts §, — =0° - __ =225°% ... . .. =45° . __.

=67.5"and - __ ______ =90°, at a photon energy of hw = 0.0043au.

Figure (3). Cross sections in e™-H(1S) collisions are compared against the percentage 2P,
component of the dressed atomic states, (a) and (b) respectively, over a range of electric
field strengths for third order Floquet dressed hydrogen atoms in a laser field. The cross

sections (

1S-2S and . _ _ _ _ 1S-2P;) are an average of the phase dependent
cross sections over a range of phases from §,, = 0° to 90°, using a Muliichannel Eikonal

Treatment. For the percentage 2Py component, represents the dressed state S

and _ _ _ _ _ represents the dressed state P.




Aqcos(wt+d,)—>

. <A Ccoswt

— 5, —

t=0
(orbit pericenter)

Figure \1): Vector potentials _ . Aocos(at = &_j and ., .eevenes A.cosut. for a
monotonic plane polanzed laser field of frequency .. are snown positioned 1n ume relauve

to the orbit’s pericenter at ime t = 0
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ELECTRON-HYDROGEN COLLISIONS IN A LASER FIELD

Philip.H.G.Smith and M.R.Flannery
School of Physics,

Georgia Institute of Technology, Atlanta, GA, 30332-0430, 'JSA.

Abstract: Cross sections for the 15-2S and 1S-2P, transitions in laser assisted e -H(1S)
collisions are calculated in both the Multichannel Eikonal Treatment and the Born-Wave
approximation, as a function of impact energy and laser field intensity. The laser considered
is a monotonic, plane polarized CO; laser (photon energy = 0.117eV) with the polarization
direction parallel to the initial projectile velocity. The first part of this paper confines the
laser perturbation to the bound electrons of the atom. A semiclassical Floquet approach
is used to dress the hydrogen atom in this soft-photon weak-field regime, and is shown
to reveal a concise description of the laser assisted collision. The Floquet dressing is
compared to dressing by the traditional time-dependent perturbation theory, showing that
the Perturbative approach gives an incomplete description of the laser interaction, and
cannot predict the distinct features provided by the Floquet approach. The second part
of this paper extends the laser perturbation to the projectile electron, and the familiar
Volkov dressed states are used. Although, in the range of impact energies and electric
field strengths considered, the Volkov dressed states exert significant influence on the cross
sections for individual state-to-state transitions, which involve absorption or emission of
a given number of photons, they have only a negligible effect on the cross sections when
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summed over all absorptions and emissions.

Special attention is employed in synchronizing the time frame of the laser field with
the time frame of the trajectory of the collisional species orbit. This requires the inclusion
of a phase shift §,, within the vector potential of the laser field. This inclusion is important

when comparing theoretical cross sections with cross section measurements.
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1.INTRODUCTION

The work reported in this paper studies the influence of the laser field on projectile-
atom collisions, in the soft-photon weak-field regime. In this regime the photon energy
is much less than the energy difference between sub-levels of the atom, and the electric
field strength of the laser can always be considered as a perturbation to the electrostatic
interactions between the nucleus and the bound atomic electrons. The effect of coupling
a laser field to a projectile electron, in this regime, during a collision with an atom
has been well explained (Volkov 1935, Kroll and Watson 1973, Geltman and Macquet
1989) via the introduction of Volkov states. Byron and Joachain (1984) have iliustrated
that perturbative dressing of the target states can have important consequences in laser-
assisted scattering. The effect of a laser field on the target atom however involves off-
diagonal elements introduced into the Schrédinger equation of the target atom by the
laser field, which not only provide couplings between eigen states of the isolated atom, but
simultaneously involve the absorption or emission of a photon, which in turn demands the
use of a non-perturbative approach. Little work has been done on this aspect although

some has recently emerged (Smith and Flannery 1991, Burke et al 1991).

This work mainly centers on the laser perturbation of the atom, and initially attempts
to probe its exclusive effect by neglecting the laser perturbation of the projectile. Before
the laser perturbed atomic Schrédinger equation can be used to calculate cross sections in a
laser field, it is essential to remove the time-dependence and to re-instate the orthogonality
of the atomic states. This is achieved using a semiclassical Floquet approach (Shirley 1965,
Sambe 1973, Chu 1985) which exactly solves the laser perturbed Schrodinger equation
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to produce a new set of orthogonal dressed atomic states, which can then be treated
in a time-independent manner. Once these new states have been determined, they can
be used within any time-independent scattering theory in a manner directly analogous
to field free collisions. In this work cross sections will be presented in the Born-Wave
approximation and the Multichannel Eikonal Treatment (Flannery and McCann 1975,
Mansky and Flannery 1990) and are compared over a range of impact energies and
electric field strengths. It will be shown that both the Born-Wave approximation and
the Multichannel Eikonal Treatment produce cross sections that exhibit the same essential
dependence on the electric field strength. As a comparison with the Floquet approach,
cross sections will also be determined via the more traditional time-dependent Perturbation
theory (Bayfield 1979). The Floguet and the Perturbative cross sections are strikingly
different, and it is claimed that this difference originates from an important omission in
the description of the dressed atomic states by the Perturbative approach. Floquet dressing

will be shown to provide a more complete description.

Having obtained state-to-state cross sections which neglect the laser perturbation of
the projectile, this perturbation will then be included within the collisional Schrédinger
equation in the form of Volkov dressed states (Volkov 1935, Kroll and Watson 1973,
Geltman and Macquet 1989). For a single state-to-state transition, with a specific final
projectile energy, the Volkov dressed states exercise a very significant effect on the cross
sections. When the state-to-state cruss sections are summed over all possible final projectile
energies reached through absorption and emission of photons, this work however shows that
the cross sections that include the laser perturbation of the projectile, are only marginally
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different from the cross sections that have neglected the perturbation of the projectile.

In order to synchronize the time frame of the relative orbit of the collisional species
with the time frame of the laser field, a phase shift §,, must be introduced into the vector
potential A of the laser field. Apart from Smith and Flannery (1991) this phase shift
has been ignored in all the above work, and has important effects. Bachau and Shakeshaft
(1984) have explicitly acknowledged the phase shift for 2p excitation in H — H(1s) inelastic
scattering in a nearly resonant field.

This paper has also been able to describe in greater detail the role played by the
Floquet states, so as to give a very concise description of the interaction, in terms of
the probability amplitudes and the locations of photon absorption and emission during
the collisional sequence of events. In section 4 the photon absorptions and emission are

discussed in the form of (A,hw) and (e,A fiw), as recently described (Newell 1990).




2.FLOQUET DRESSED STATES OF AN ATOM IN A LASER FIELD

This theoretical model is based on a typical crossed beam experiment, in which the
laser beam, projectile beam and atomic particle beam all cross at one point in space at
90° angles to each other. The collision will be considered in the center of mass framez of
reference, but it should be noted that the projectile will have a much greater velocity than
the target atom in the laboratory frame of reference. This is important since the atom will
be inside the laser-beam for the duration of the collision, and so must be excited from one
dressed atomic state to another.

When the laser perturbation of the projectile is neglected the Hamiltonian, in the

center of mass frame of reference, is given by
H=LPi+> 3(pr+A/c) +V(r)+V(R,r) (1)

The channel coordinates, (Pg,R), represent the momentum operator and the position
vector for the projectile. The internal coordinates, (p,r,), represent the momentum
operator and the postion vector for each bound electron. The electronic coordinates are
denoted collectively by r, c is the speed of light, j is the projectile-target reduced mass,
V(r) is the internal potential for the bound atomic electrons and V(R,r) is the external
projectile-target interaction potential. Atomic units are used throughout.

The monochromatic laser, of frequency w and phase §,,, should be exactly described

by the vector potential
A(w,r,.1) = Aycos(ky - + wit +&,) (2)

But at the atomic scale, since the reduced wavelength A = f]—- is much larger than atomic
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dimensions, the dipole approximation is valid so that the vector potential reduces to
A = A, cos(wt + 4,,) (3)

In semiclassical scattering theories, the point of closest approach (the periapsis), between
the projectile and the target, is generally defined as occurring at time t=0. If the vector
potential, under the dipole approximation, was written as A = A, cos(w?), then this would
indicate that for each collision the electric field strength was at a maxima of its cycle at
the point of closest approach, as indicated by the dotted curve in Fig.1. Since this is not
in general true, it is necessary to use the vector potential given in eq.(3), where 4, is the
phase shift of the vector potential eq.(3), from A, cos(wt), at the point of closest approach
as indicated by the solid curve in Fig.1.

To dress the atomic states it is necessary to consider the effect of the laser field on
the isolated atomic target. This is done by removing the projectile components from the
Hamiltonian eq.(1). On applying the unitary transformation U = exp(i }_, A r;/c), (Reiss

1970), the Schrédinger equation for an atom in a laser field is then expressed as

ihigy' = (Z[%pi,- — o m(e ) e""‘“”“‘“”] V@) (4)

[

where ¢, is the electric field strength A,w/c, and where it has been assumed that the
periodicity is the only time-dependent part of the vector potential. The solution of eq.(4)
is the dressed atomic state ¢' (at present unknown). On using the field free atomic
Hamlitonian H, = ¥, 1p? +V(r), and on setting y* = —iz€, e the laser perturbed

atomic Schrédinger equation eq.(4) is written in the more compact form

<Ho T Zy,i(c'“” ~ T - iha‘%)ﬁq"') =0 (5)
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which is now suitable for application of the Floquet prescription (Shirley 1965, Sambe

1973, Chu 1985). Under this prescription, the solution to eq.(5) is of the form
) = ltg) = €70 /1Gy) (6)

where @, is the energy or “quasi-energy” of the new dressed state, and G, has a periodic
time-dependence of period 2“—" Since G, is periodic in time, it is expanded by the Fourier
series

Go) = > |Gy ,n) (7

where the Floquet notation, introduced by Shirley (1965) is used. Thus
I"/’,’ﬂ) p—] "‘[))I’n) With ('[I'n) _ einwt (8)

and |n) will be called a “periodic” state for clarity later. Using this Fourier expansion, the
Schrédinger equation eq.(5) can now be rewritten so as to explicitly include the periodic
photon dependence nfiw as

Z(HO + nhw + Zyit(eiwt _ C—iwl))e—thi/hlG'g,n> — ZQqC—quU”G;,’n) (9)

n
In this weak-field regime the dressed atomic states can be approximated by a combination

of field free atomic states, as

[g) = Y Apaldg,n) (10)

n

where the periodic time-dependence of the coefficients has been separated by using the

periodic states in}. On comparing this with the Floquet dressed atomic states
wh) = ¢ AN G ) (11)
n
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then the laser perturbed Schrédinger equation eq.(9) can be written in the matrix
representation as

Z [(Ea + nhU))(sﬁa(Snzm + M;aén=m—1 - #;a6n=m+] AZ;Q = Qq (;nﬁ (12)

n

The field free atomic energy levels ¢, and the laser induced off-diagonal elements p.ga =
—13(¢gleo T|da)e*® are known, so that the matrix defined by eq.(12) can be diagonalized
to obtain the quasi energies (), and the dressed atomic states 11’;. Because the Floquet
prescription allows for an infinite set of periodic states, from n = —c0 to oc, it is necessary
to truncate the matrix. But as long as the off-diagonal couplings pgfa are small, this
truncation can be quite severe whilst still allowing convergent dressed states to be obtained.
Fig.2 shows a specific example of a Floquet matrix for a hydrogen atom in a laser field.
Significant couplings only occur between field free atomic states ¢g and ¢, if the energy

level separation is of the order of, or less than, the photon energy of the laser
lea — €8] < hw (13)

For a collisional problem that considers excitation from the n=1 to the n=2 sub-levels,
internal couplings within the n=2 manifold need only be considered at the photon energies

used within this work.
To a first order approximation, which allows only single photon coupling, the matrix

of Fig.2 vields the dressed atomic states

1S} = A|25,n) + Be'% 2Py, n+1) + Be 7 |2Py,n—1) (14a)

|P) = A12Py,n) + Be™ |28, n+1) + Be " |28, n 1) (14b)
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It is emphasized for these dressed atomic states, that n varies across the range from
n = —o0o to oo, giving rise to an infinite set of periodic Floquet states. In higher order
approximations to the dressed states, multiphoton couplings are included, so that eq.(14
a,b) include further terms for n+2, n+3 etc. Results of section 5 shows that convergence
is achieved by a third order approximation, so that terms up to n+3 provide an adequate
description of the dressed atomic states, over the electric field strength range considered
in this work.

From the form of eq.(14 a,b), it can be seen that the fractional 2S and 2Py components
of both dressed states S and P change with varying electric field strength. The character
of the dressed states S and P will then change with increasing €,. This changing character
of the dressed states is clearly seen from the radial distribution functions, where the radial

distribution functions Dg(r) and Dp(r) are defined by the equations
oo 2n  pm
(S18) = / Ds(r)dr/ / dcos 6do (15a)
0 o Jo

o 2r pm
(P|P) = / Dp(r)dr / / d cos fdp (15b)
0 0o Jo

The radial distribution functions, for the dressed states S and P, are shown in Fig.3a

- Fig.3c as the electric field strength ¢, increases from 0 au to 3 x 10™% au. These
radial distribution functions correspond to third order Floquet dressed hydrogen atoms.
Convergence in the state-to-state cross sections of section 5, for third order Floquet dressed
atomic states, is used to justify a third order approximation here. It is seen that as the field
strength increases, the radial distribution function Dg(r) loses its intrinsic 2S character,
while gaining an increasingly 2P, character. In a similar fashion the radial distribution
function Dp(r) is losing its intrinsic 2Py character, while gaining an increasingly 2S
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character. The plot in Fig.4 attempts to represent this, by looking at the percentage
component of the 2P field free radial distribution function, Dyp,(r), in both Dg(r) and
Dp(r). This shows very clearly the play off between the dressed states S and P indicated
in the set of plots in Fig.3. As the electric field strength rises, both states S and P
simultaneously give up some of their intrinsic zero field character, and assume more of
each other’s intrinsic zero field character. This character swapping continues past the
point, where the dressed state S has more of a 2Py character than the dressed state P.
If the statement is made, for the collisional energies studied in this work, that the field
free 15-2P, state-to-state integral cross section is always larger than the field free 1S-25

state-to-state integral cross section, ie if

031S2P, > 01528 (16)

then from the plot of Fig.4 it might be reasonable to expect, as the electric field strength
rises, that the laser assisted 15-2S state-to-state cross section will rise, and the laser assisted
15-2Py state-to-state cross section will fall. This rise and fall can also be expected to

continue past the point where the laser assisted 15-2S state-to-state cross section is greater

than the laser assisted 1S-2P, state-to-state cross section.




3. TIME-INDEPENDENT SCATTERING CROSS SECTIONS

In section 2 the time-dependent Schrédinger equation for an atom in a laser field,
was solved using the Floquet prescripticn to obtain new eigenstates, or dressed states
for the atom in a time-independent form. The time-dependence has been removed by
allowing for absorption and emission of photons. These dressed states can now be used
to solve collisional problems in a manner directly analogous to field free collisions. In
this work the scattering cross sections for the laser assisted collisions are derived from
the Lippman Schwinger equation (Bransden 1970). This approach is valid to all orders
of approximation of the dressed states, given the necessary assumption that the dressed
states form a complete and normalized set. From section 2 the laser assisted collision can

be described by the Hamiltonian

H—~%+Zz%—z%rw“—ﬂﬂhvu+wmw
(17)
= Hp + V(R,r)
When the interaction potential V(R,r) is removed, the remainder Hr describes the

projectile far removed from the target atom, which remains in the presence of the laser

field. The solution.q) of the Schrédinger equation
(i — HF)® =0 (18)

is the combination & = ¥, exp(ik, -R) of the dressed atomic states 4 of section 2, with
a field-free projectile plane wave. The scattered collisional wave function in the presence

of V then satisfies

. _ 1 ) o
i‘I’;tJ) = ¢ TEUMG ) - lim e 1 et het/R gz

e—~0E IZE—H q> (19)
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The probability of a transition between the scattered collisional wave functions ‘I’q+ and
¥ is given by the S-matrix

Spa(t) = (¥, 197) (20)

On inserting the scattered collisional wavefunction eq.(19) into the S-matrix eq.(20), and
expanding the dressed atomic states ' into the combination of field free atomic states ¢

of eq.(10), the S-matrix is then

Spq(t) = (‘I’p|'1)q>5pq
+ZZAP @ lz(Q,,-{- kl mhw)t/h
m

1
A;
XEZ an +——k2—nhw+ze Qp—flﬁk§+m,hw

z(Qq 2# k! nhw+ze)t/hV|\I’:> (21)

Under the following definition

exp[(QP o % Qq —ﬁkf + (n—m)hw — ie)t/h)

0 Qq + - nhw + 16 — Qp — —]-kz + mhw (22)
=27 ié(QP + 517‘-1»?. + (n-—-m)hw — 21“ k?)

of the Dirac é-function, eq.(21) becomes
Spe(t) = (¥p|¥q)bpg + 121 Tpq 6(Qp + ﬁki + (n~m)hw - Qg — 2‘1;’“:?) (23)

Using terminology directly analogous to field free collisions, the S-matrix eq.(23) has been

written in terms of the transition amplitude

Ty = ZZ Z Z 4 An q)ﬁ“"!q':) = (¥»Vivg) exp(i(k, —ky) - R) (24)
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and includes all of the possible photon absorptions and emissions that can occur during
collisonal transitions between the dresses states. For a field free collision, k, and k, would
be defined as the wave numbers for the projectile, associated with the initial atomic state
¥, and the final atomic state ¢, and the difference between k, and k, depends on the

q

difference
Qy~Qp= ﬁkz - ?1;": (25)

between the energy levels of 1/*,'1 and ¢,. The initial asymptotic wave number for a laser
assisted collision is still kg, since the projectile has not yet interacted with the atom,
but the final wave number k; differs from kj so as to satisfy the conservation of energy

requirement

Tk} = Qo+ £k - Qp — (n-m)hw (26)

2p 4

Since k, ic defined by eq.(25), ks can be defined by

ﬁki = ilﬁkz — (n—m)hw (27

This shows that ks can differ from k, by the photon energy (n—m)hw, which corresponds
to the number of photons absorbed or emitted in the state-to-state transition.

The S-matrix obtained in this treatment describes scattering within the dressed basis
set. The associated scattering amplitudes which can be derived from various theoretical
techniques, only describe transitions between dressed states that are part of the new
basis set. To obtain results that can be directly compared with field free collisions and
experimental results, it is necessary to calculate the laser assisted scattering cross sections
with respect to the field free basis set. From Bransden (1970) the cross section for a
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transition from the field free atomic state @, to field free atomic state ¢g is

1 7
%Be = Lo /dQ/dkfkfﬂa (28)

where W3, is the transition rate. For any given scattering angle and state-to-state
transition, there can be more than one wave number for the projectile, corresponding
to absorption and emission of energy from the laser field. This means that the transition

rate is defined as

o=Y 2mp’ |Tpol* 8(ep ~ €a + k3 — ke + 8E) (29)

where it is written in terms of the transition amplitude T},, and includes the unknown
energy change 6 E due to the influence of the laser. In eq.(29) the final wave number k;
must be written in terms of the wave number kg, associated with the atomic state ¢g in

a field free collision. Using the definition of kg

51';7’"'[23 =€ + -ﬁ;ki — €q (30)

in the delta function of eq.(29), the resulting equation
112 _ 12
5 ks = 5,k — 6 (31)

relating k¢ to kg is very similar to eq.(27), and includes the unknown energy change 6 E. It
is now possible to insert the transition rate eq.(29) into the integral cross section eq.(28).
Using |ks|dk; = d(%kf») so that the integration over k; can be evaluated, the integral cross

section becomes

1 I
OBa = m/dﬂ Zkf "Trpz T5ai 2 5(2—1—k ilu-l‘é + 6F) (32)

kg
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which is equivalent to the standard integral cross section in the field free basis set, except
that allowance has been made for the absorption or emission of an unknown amount of
energy 6 E from the laser field during the collision. The set of dressed atomic states obtained
in section 2 are assumed to be a complete and normalized set so that 3 o 1¥a){¥g| =1. On
using this projection operator the “measured” transition amplitude, taken with respect to
the field free basis set, is written in terms of the “dressed” transition amplitude, taken

with respect to the dressed basis set as

Too = (85]V|90) ZZ (#6,00%p) Tpq (¥gl¢a,0) (33)

The “dressed” transition amplitude T}, of eq.(24) has been determined by the Lippman
Schwinger equation, and according to eq.(26), ky must satisfy the conservation of energy

requirement

Qp + 7k} = Qq = 3k} + mho =0 34)

where n has replaced m —n. As demonstrated in eq.(33) the “measured” transition
amplitude, T34, can be obtained from the “dressed” transition amplitude, Ty, and k¢

must satisfy the second conservation of energy requirement
€6 + 3,0} — €a ~ 35k +EE =10 (35)

obtained from eq.(30). The final wave number, ky, of the scattered projectile must be
identical for both equation eq.(34) and eq.(35). This provides an opportunity to determine
the total energy absorbed or provided by the laser field. It may be a natural assumption
that this energy 6 F' is an integer number of laser photon energies nhiw. But on diagonalizing
the Floquet matrix to obtain the dressed wave function, it can be seen for some transitions
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to occur, that the energy change § E' cannot be an integer number of laser photon energies.
In molecular spectroscopy an analogous situation occurs, where a molecule is excited to
a higher energy level by a laser photon, which has more energy than is required for the
transition (Weissbluth 1989). In the Raman effect, the molecule absorbs the laser photon
and then emits a new Raman photon to remove the excess energy. This is the process that
is assumed to be occuring whenever necessary, with no additional restrictions applied to
the transition because it must proceed via the Raman effect. A discussion of this effect is
given in section 4, and is shown to play a significant role in the laser dependent changes
in the integral cross sections.

Since the vector potential eq.(2) can only be defined to within a phase shift 4, as in
Fig.1, it is therefore necessary to take the following average

1 f2"

Oexperiment = % ; 0'(5w) d(‘sw) (36)

of o over the range of 4, from 0° to 360°.
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4. THE ROLE OF THE FLOQUET DRESSED STATES

In discussing the use of Floquet theory in laser assisted collisions, reference will be
made to a reduced Floquel system of a hydrogen atom in a laser field. An abbreviated
energy level diagram is shown in Fig.5; The states shown are only a limited number of
the infinite set of periodic Floquet states. In a first order approximation which allows for
single photon coupling only, the system is adequately described by the following 7 states

selected in the diagram of Fig.5,

1) = [15,0) (37a)
|2) = A|28,-1) + Bc'%|2P,,0) + Be ' |2P,,~2) (37b)
|4) = A|2S,0) + Be™«|2P;,+1) + Be %« |2Py,-1) (37¢)
16) = A|28,+1) + Be'* |2P;,42) + Be™*|2P,.0) (37d)
13) = A|2Py,-1) + Be'®«|285,0) + Be™ '+ |25,-2) (37¢)
|5) = A|2Py,0) + Be's~|28,41) + Be i |28,-1) (37f)
|7) = A|2P;,+1) + Be'®~|25,42) + Be™*«|28,0) (379)

For illustration purposes a first order approximation has been used here in the atomic
dressing to reduce the number of possible transitions available; but all that is said here is
valid to any order of approximation

For the purpcses of numerical calculations, the energy levels 25 and 2Py can be
considered to be degenerate, though it must be kept in mind that this is not so. ven if
the field free energy levels were degenerate, this degeneracy would be broken when in the
influence of the laser field due to coupling between the 1S and 2P states.
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Consider the laser perturbed Schrédinger equation eq.(4)

ih g = (Z [%pi, — ijeo - nif 1) - e“i(“’*“w))] + V(r))dv' (38)

1

The laser induced perturbation %eo - 1r;, provides a dipole coupling between previously
orthogonal field free atomic states, a coupling that contains a time-dependence e'**.
Because of this time-dependent coupling, the field free states are no longer eigenfunctions
of the Schrédinger equation, and the Schrodinger equation is then no longer time-
independent. In section 2 it was shown that the Floquet nrescription results in a new
orthogonal basis'set, composed of dressed atomic states whr  an be treated in a time-
independent manner. These three properties (orthogonality, eigen functions and time-
independence) of the Floquet dressed atomic states, allow traditional, field free, time-
independent scattering theories to be applied to laser assisted collisions. However the
price to be paid for these three properties is the introduction of the infinite set of periodic
solutions. The transition between the finite set of field free atomic states, and the infinite
set of dressed atomic states, is achieved by projection. This has been introdunced in eq.(33)
of section 3, where the “measured” transition amplitude, taken with respect to the field free
basis set, is written in terms of the “dressed” transition amplitude, taken with respect to
the dressed basis set. Because the dressed atomic states have a periodic time-dependence
it is necessary, in order to achieve this projection, to write the field free atomic states as

a combination of field free atomic states and periodic states. In the expansion

iba) =Y Ane™ "¢, n) (39)

of the field free atomic state into a field free state and periodic state combination, 4, is
non-zero only when n = 0. Thus the field {ree atomic state |¢,) is equivalent to the n =0
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Floquet state |¢o,0). Using this with the above set of dressed atomic states eq.(37), the
new dressed basis set (in this first order approximation), for a hydrogen atom originally
in the 2S field free state, for example, will have a non-zero population density only in the
dressed atomic states labelled 3, 4 and 7. Conversely, any population density in the dressed
atomic states 3, 4 and 7 of the dressed basis set, will each contribute to the population
density of the 2S state of the field free basis set. In order for population densities in the
dressed states 3 and 7 to contribute to the population density in the field free state 2S, the
laser field is required to provide (or absorb) a non-integer number of laser photon energies.
This is becaunse the 25 and 2P field-free energies are, in fact, not degenerate, and because
E; = E5 — hw and E; = E5 + hw, as asserted by Floquet theory. Although it is not
immediately obvious, the same problem is associated with the dressed state 4. Due to 25-
nP (n>2) couplings, the energy of state 4 shifts with changing electric field strengths so that
E,; # Ezs. As mentioned in section 3, production of these non integer photons, is known
as the Raman effect, and as can be seen, a Raman photon will be involved whenever the
“dressed” transition amplitudes are projected on to the “measured” transition amplitudes.
This is considered an atom-field effect and will not involve the projectile directly. For
collisions within the dressed basis set, all energy differences for atomic transitions, are
accounted for by changes in the wave number of the projectile, plus the absorption or

emission of an integer number of laser photons.

To show the effect of the Floquet approach on a laser assisted collision, the 15-2S

excitation in an electron-hydrogen collision

H(18)+ ¢ + Nhw — H(2S5)+ ¢ + Mhw (40)
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will be considered for first order dressed atomic states. Table 1 shows the “dressed”
transition elements and their probability amplitudes when projected onto the “measured”
transition amplitude T1s25. These values can then be used in a first order Born-Wave
approximation. It is interesting to note that the 3 “dressed” transition amplitude elements
for T3, are the same as the 3 “dressed” transition amplitude elements for T7y, with identical
changes in the projectile energy. In fact the transition amplitude elements for T3; are

duplicated for all transitions 1 — P where P represents all states
|P) = A|2Py,n) + Be**|25,n+1) + Be % |28,n 1) (41)

This feature of the Floquet dressed atomic states is very useful for the closely coupled
calculations required in the Multichannel Eikonal Treatment of the collision, where the
infinite set of periodic states tend to make such calculations appear at first sight prohibitive.

Consider two members of the set P of states defined by eq.(41),

l¥p,1), energy level = Qp + hw

and

14'5,0), energy level = @,

In a transition between these two states, the change in projectile energy due solely to
the difference in energy levels is hw, ie ﬁkgl = alﬁk:o — hw. Then (¢p,1{4,0) = 0,
since a photon must be absorbed from the laser field in the transition, a photon which
neither |y7,.1) nor |y, 0} can absorb yet still preserve their energy levels. If however each
state is associated with a projectile of the same energy, forming a collisional wavefunction

¥, = ¢, exp(ik - R), then, for a collisional transition from atomic state {¢*,0) to |yp, 1),




the projectile can absorb the laser photon as is required, and regain the energy hiw which
it lost in making the transition to the higher energy level. Hence the projection between

the two collisional wave functions is
(1ps1] exp(~iky - R) exp(iki - R) [,0) = 1 (42)
ie the wave functions are no longer orthogonal when

12— 12

112 - 12 _ - 1 =

= (43)

This result can be extended to all other members of set P, with the same results for other
sets of periodically repeating dressed atomic states. This feature of Floquet dressed states
makes it impossible to define the probability amplitude of being in a given dressed atomic
state when combined with a projectile wave function. Or described another way the system
exists in a state of flux between all periodic states of the same form associated with a given
projectile energy. This necessitates a summation of the probability amplitudes over what
are termed “grouped” states (Smith 1991). Hernce the entire infinite set of periodic Floquet
states can be included exactly within the closely coupled calculation. Although essential
for the Multichannel Eikonal Treatment these “grouped” states can be ignored in the first
Born approximation.

Inserting the contents of Table (1) into eq.(33), which relates the “measured”

transition amplitude to the “dressed” transition amplitude, T} 535 becomes

Tyszs = A*Visys 5(2—1,;!\'?; = 3%’39)
+ ABVisap,c 7 §(kT = his - hw)

2
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+ ABViszp €' §( k5 = sokls + hw)
+ ABVisap, (€ + €7%) 6(3:kF = 2-hip,)

+ BVisas1 47 ) B(35H] = 3ok, — o)

+ B Visas(e™® +1) 8(50k5 = gkdp, + hw) (44)

In contrast the laser assisted differential cross section can be calculated using the traditional
time-dependent Perturbation theory (Bayfield 1979). For an oscillatory perturbing

potential

H(I‘,t) — -‘i€o ) r(eiwtei&, _ e—iwie—-i&,) (45)

the perturbed or dressed wave function is

b =D ) aj(t) gp e iet/ (46)
n=90 g

where ¥ ; is a summation over the unperturbed atomic states and ¢g is the energy level
of state ®3. To a first order approximation this gives just three dressed states for the laser

perturbed 1S, 25 and 2P field free states

drs = [drs)e” st/ (47a)

b2p, = ( Dii¢ar,) + Daléas)e™ e’ + Dolas)e™" ™" )e""“’*/” (47¢)

where D; = N, D, = —i{@3]¢ - riq’)a)g and N is a normalization constant. Instead of

o8 = ( Dilgas) + Daldar,)'e + Dyfbar)e™ e )emiastt (47

projecting the dressed states onto field free states, this form of approach assumes that the

dressed states collapse onto their field free source (Sharma and Mohan 1990). Taking this
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type of approach the Tjg;5 transition amplitude becomes

Tis2s = D1Visas 5(51— ?‘ = ] kzs)
+ DaVisepye ™ §(35 k% = 5okss — hw)

+ D2 Visap e §(hkG = o-kis + hw) (48)

2u

Comparing the Floquet dressed atomic states of eq.(37) with the Perturbative dressed
atomic states of eq.(47), it can be seen that each individual dressed state ¢ has a very
similar form under both treatments. But the Perturbhative approach does not predict the
infinite set of periodic states. This lack of an infinite set of states makes a great difference in
the “measured” transition amplitude, as can be seen by comparing the Floquet transition
amplitude of eq.(44) with the Perturbative transition amplitude of eq.(48). Not only does
the Floquet transition amplitude have more terms, or more paths for the transition, it alsc
has a é,, dependence that will be preserved in the cross sections, whilst the &, dependence of
the Perturbative transition amplitude will clearly cancel out in the resulting cross sections.

By first predicting the infinite set of states, and then by writing the “measured”
transition amplitude in terms of the “dressed” transition amplitude, this Floquet model
provides two distinct areas of possible photon absorption and emission, which can be
denoted by the mechanisms (A,hiw) and (e,Afiw). (A,kw) refers to the projection of the
dressed atomic states onto the field free atomic states, and gives rise to laser photon
absorption and emission and Raman photon emission. (e,A,hw) refers to the transitions
between dressed atomic states which requires the influence of the projectile, and which only
gives rise to laser photon absorp.on and emission. There is a third area of possible photon
absorption and emission, which is omitted in this model that ignores the laser perturbation
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of the projectile. This can be denoted by the mechanism (e,iw), which refers to photon
absorption and emission by the projectile before and after the collision. When the full
laser perturbation is included, (section 6) there is no indication of such photon absorption
and emission, so that the multiphoton events, associated with the projectile, occur during
transitions between dressed states only, or is described by (e,A,iw). Hence (A,hw) and
(e,A,hw) adequately describe the mechanisms and sequence of all multiphoton events. It
can therefore be seen that this model provides a concise description of the projectile atom
collision in a laser field, where the interactions (A,hw) and (e,A,hiw), as recently described

(Newell 1990) are included exactly.




5. RESULTS: e~ + H(1S) + Nhw —s ¢~ + H(28,2P,) + Mhw

State-to-state cross sections for the 15-2S and 1S-2P, transitions, in laser assisted
e -H(1S) collisions, are presented in both the Multichannel Eikonal Treatment and the
Born-Wave approximation, as a function of impact energy and laser field intensity. All
cross sections shown are a summation over the state-to-state cross sections, for all possible
final projectile energies consistent with a given initial relative energy. Changes in the
final projectile energy arise from photon absorption and emission. The laser considered is
a monotonic, plane polarized CO; laser (Aw = 0.117¢V), with the polarization direction
parallel to the initial projectile velocity. The restricted basis set - 1S, 25, 2Py, and 2P 4,
- is used for the dressing of the states, which in turn provide the basis set used within
the Multichannel Eikonal Treatment. The axis of quantization is along the direction of
incidence of the projectile electron, and as stated above is also taken as the direction of

polarization of the laser field.

Cross sections vs field strength are presented in Fig.6 and Fig.7, for Floquet dressed
hydrogen atoms where é, = 0°. The cross sections are compared over a range of orders
of approximation for the dressing of the atomic states. It can be seen that there are
very striking differences between the different levels of approximation, especially between
the first order cross section (which fails to exhibit a second stationary point) and the
higher orders. It is also apparent for both the Born-Wave approximation (Fig.6) and
the Multichannel Eikonal Treatment (Fig.7) that at least a third order approximation
in the Floquet dressing is needed in order to reach convergence over the range of field
strengths studied. The divergence from convergence, for each order of approximation,
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occurs at successively higher field strengths. Cross sections vs field strength are presented
in Fig.8 and Fig.9 for Perturbatively dressed hydrogen atoms. In contrast to the Floquet
dressed atomic states, the Perturbative dressed atomic states produce cross sections with
very little significant difference between the successive orders of approximation. Although
convergence is not even satisfactorily reached by a fifth order approximation - a fifth order
cross section is nearly identical to a third order cross section, but a fourth order cross
section is distinctly different - a reasonable qualitative result can be obtained from a first

order approximation.

As the fheld strength ¢, rises, cross sections for both the Floquet dressed atomic states
(Fig.6 and Fig.7) and the Perturbatiive dressed atomic states (Fig.8 and Fig.9) show an
initial rise for the 1S-2S cross sections and an initial fall for the 15-2P¢ cross sections. This
initial trend is due to the dressed atomic states S and P, which show increasing amounts of
each others zero field characteristics. The percentage 2Py component in each of the dressed
atomic states S and P, presented in Fig.10 as a function of field strength, illustrates this in
a very visual manner for third order Floquet dressed and third order Perturbative dressed
states, (a) and (b) respectively. The plots of Fig.10 exhibit the play off between the
dressed states S and P, with each simultaneously giving up more of its intrinsic zero field
character, and adopting more of the other character. For both approaches to the dressed
atomic states, this character interchange continues past the point where the dressed state
S has a greater 2P characteristic than the dressed state P. It is to be expected that the
scattering cross sections would rise and fall according to the character of the dressed atomic
states, ie, the 15-2S cross section, is expected to rise past the falling 15-2P¢ cross section
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as €, increases. This is the case for the cross sections produced by Perturbatively dressed
atomic states, where the plots of Fig.8 and Fig.9 exhibit a monotonic rise and fall in the
15-2S and 1S-2P, cross sections. But it is clearly not the case for cross sections produced
by Floquet dressed atomic states. The plots of Fig.6 and Fig.7 show cross sections, where
there are distinct peaks and dips, which seem to bear no relation to the character of the
dressed states. These peaks and dips arise from the contributions to the state-to-state
cross sections, from the infinite set of periodic states. The first order cross sections, of
Fig.6 and Fig.7, demoustrate very clearly the contribution to the cross section via the first
order terms only. As the field strength rises, the contribution to the cross section via the
first order terms increases, and these contributions, whilst initially augmenting, eventually
begin to curtail the rising change in characterstics, thereby causing the single stationary
point. For the second order cross sections, contributions are allowed from both first and
second order terms. As the field strength rises, the rising contribution to the cross sections
from second order terms is now added to the first order contributions. The second order
{erms initially curtail, but then augment the rising change in characteristics, and eventually
managed to dominate the first order contributions to cause the second stationary point.
This distinct difference between the first and second order approximations to the cross
sections, emphasizes the role played by the higher order terms through the infinite set
of periodic dressed states. Since the infinite set of periodic states is not predicted in a
Perturbative dressing of the atom, contributions from higher order terms cannot occur.
Thus no stationay points can be expected, for the Perturbative cross sections, as the cross

sections follow the character of the dressed atomic states.

28




It has already been explained in section 3 that any experiment would measure cross
sections over a range of phase factors é,,. Cross sections are presented in Fig.11 and Fig.12,
compared over a range of phase factors from 4, = 0° to 90°. Cross sections for phase factors
in the range 90° to 360° are a repeat of those shown. A model attempting to predict
experimental results, therefore requires averaging over the reduced range of 0° to 90°
alone. The cross sections pertain to Floquet dressed hydrogen atoms, and are calculated by
the Born-Wave approximation (Fig.11) and the Multichannel Eikonal Treatment (Fig.12).
Cross sections for Perturbative dressed atomic states are not presented, because of their
phase independence. The above results (Fig.6 and Fig.7), which illustrate convergence
in the cross sections for rising orders of atomic dressing, justify the use of a third order
approximation in the following cross sections. The Born-Wave approximation (Fig.11)
and the Multichannel Eikonal Treatment (Fig.12) both show a range of different responses
of the cross section to the changing field strength. These range from the two distinct
stationary points exhibited by cross sections for é,, = 0°, and the single stationary point of
the cross sections for §, = 90°. For é, = 90° there are no contributions to the cross sections
from first or third order terms, so that the single observed stationary point is dependent
on the second order terms only. For phases between 0° and 90° the contributions from the
different orders vary, giving rise to the range of cross sections between the two extremes
described. Both the Born-Wave and the Multichannel Eikonal results are presented in
Fig.13 when the cross sections are averaged over the required range of phases, from 6, =
0" to 90°. It is immediately noticed, while the dressed atomic states S and P practically

exchange zero field characteristics as the electric field strength rises, that the averaged
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cross sections for the 15-2S and 15-2P transitions never cross. Also the field strength at
which the two cross sections are identical, is the same as the field strength at which the
dressed atomic states S and P each contain a 50:50 combination of 2S5 and 2P, field free
states. This non-crossing of the averaged cross section in Fig.13, is due to the projection
of the “dressed” transition amplitudes onto the “measured” transition amplitudes. If the
dressed atomic states S and P are dominated by each others zero field characteristics, they
will then contribute more to the state-to-state cross section of the character that dominates
them, via the infinite set of periodic states, than to the state-to-state cross sections of their
own zero field character. Hence a dressed state S, with a predominately 2P character,
contributes mostly to the 1S-2Pg cross section, rather than the 1S-2S cross section. This
then leads to viewing the phase dependent state-to-state cross sections, as being variations
from these phase averaged cross sections. These variations occur due to constructive and
destructive interference. When the cross sections are averaged, the effect of the interference
is cancelled out. To contrast with this non-crossing of the cross sections in Fig.13, cross
sections vs frequency are presented in Fig.14 for third order Perturbative dressed atomic
states. For the Perturbative dressed atomic states, the 15-2S and the 15-2P¢ cross sections
do cross in Fig.14, with the cross sections again being identical at the same field strength

that the dressed states S and P each contain a 50:50 mixture of 25 and 2P, field free states.
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6.LASER PERTURBATION OF THE PROJECTILE
The full effect of the laser field is now considered by applying the laser perturbation

to both the projectile and the target atom. The perturbed Hamiltonian is

H=3Pi~ZPr-Alct 52-(AZ/c)}

+D 3P + A/ + V() + V(R,T) (490)
= 5PR— ZPp-Alc+ 77—(AZ/c)® + Hr + V(R,r) (49b)

in the center of mass frame of reference, where the Floquet Hamiltonian for the atom

Hp = Ypri+ Afc) +V(r)
1

has already been considered in section 2. The charge and the mass of the projectile are Z
and m,. For heavy particle collisions, mnp # p the reduced mass of the collisional system.
This difference occurs because the laser perturbation must be applied in the laboratory
frame of reference, and the resulting Hamiltonian is then transformed to the center of mass
frame of reference. The laser perturbations can be handled by treating the projectile and

the atom as isolated systems. The internal atomic portion has already been considered via

the solution of idi¢ = Hr¢ in section 2. Thus a solution for the projectile Hamiltonian
Hp=3Ph— ZPr-Afc+ 5= (4Z/c) (50)

only is needed. The wave function &, which satifies the Schrodinger equation ¢ %@ = Hpd,

1s represented by

& = exp[ i( Pr R+ -Z /: Pg - (Ao/c) cos(wr+6.) — o ) dT] (51)
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where « is a constant phase shift that cancels out in the collisional S-matrix. In the original

paper by Volkov (1935) the solution ® is expressed in the general form

mp

= exp[i( Pr-R+ ZPg-(A,/we)sin(wi+8,) — a ) ] .2, (52)

where Z, is dependent on Pg, A,, w, mp, b, and z. If it is assumed that the only
dependence of Z, on x can be acknowledged by varying é,, then é, can be easily varied

for any value of x, to give
wr+6,=0 and Z,=1

for use in eq.(52) giving rise to the usual Volkov dressed wave function for a laser perturbed

plane wave
= cxp i Pn Rt ZPr-(Adfuc)sin(or+6) o ) | (53)

In deriving the wave function eq.(53), the assumption has been made that there are no
transient effects arising from turn-on or turn-off of the laser, as is reasonable in this soft-
photon weak-field regime. Having set wz + 6, and Z, = 1, it must be realized that §, has
now taken on a definite and distinct value for each collision. I ¢ = z is defined as being
the time at which the point of closest approach for the collision is reached, then §, is the
phase shift of the laser field at the point of closest approach, as shown in Fig.1. In any
experiment, collisions will occur across a wide range of space and time. Thus §,, will not
be in general a constant for all collisions. As mentioned in section 3, a theoretical model
that purports to predict experimental results, must include an average of the collisions
over a range Jf 6, from 0° to 360°.
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This dressed projectile wave function can now be combined with the dressed atomic
wave functions from section 2, and using the techniques of section 3 the laser perturbed

collisional S-matrix

Spa(t) = (p|@q)bpg + 127 Ty 6(Qp + A2 + (ntz—m)hw — Qg — Ak7)  (54)

2p

can be derived. This S-matrix is of exactly the same form as eq.(33), with the new “dressed”

transition amplitude

Tpe = ZZZZZ Aps o (26|VIF) Jo(D) e (55)

The Bessel function argument D is —n%(k, — ky) - (Ao/wc), and as usual arises from a
Fourier expansion of the Volkov dressing of the projectile. The new conservation of energy
requirement is now

-;—pk? i'ﬁk — (n+z~m)hw (56)

where the projectile contribution «, to the number of photons absorbed and emitted during
transitions between the dressed wave functions, is also included. The “measured” transition
amplitude 75, can now be written in terms of this new “dressed” transition amplitude T,
as outlined in section 3.

Cross sections vs field strength are presented in Fig.15 and Fig.16, for third order
Floquet dressed hydrogen atoms, in a Born-Wave approximation of laser assisted e~ -
H(1S) collisions. Cross sections with the laser perturbation included for both the atom
and the projectile, are compared with cross sections that neglect the laser perturbation
of the projectile. It has already been shown that the Volkov dressing produces a very
significant effect on individual differential and integral cross sections, with a specific final
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projectile energy (Weinsgarthofer et al 1979, Byron et al 1987, Jetzke et al 1987, Sarkar
and Chakraborty 1988). When the state-to-state transition cross sections are however
summed over an increasingly wider range of projectile energies, corresponding to higher
order multiphoton events, the fully perturbed collisional cross sections converge on the cross
sections that include a laser perturbation of the atom only. This is clearly evident from
the cross sections displayed in Fig.15 and Fig.16. As would be expected, this convergence
improves as the initial impact energy increases. This study has only been conducted
using the Born-Wave approximation, due to the difficulties associated with producing
a practical numerical technique that can handle the Volkov dressed states within the
Multichannel Eikonal Prescription in a reasonable amount of computer time. Despite
the practical problems there is no difficulty in principle from using the new transition
amplitude, and there is nothing to indicate that the convergence exhibited by the Born-
Wave approximation would not be reproduced by the Multichannel Eikonal Treatment as

well.
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7.CONCLUSION

This work has studied laser assisted collisions, in a soft-photon weak-field regime,
for intermediate energy projectiles. Within this regime, the most appropriate method
of incorporating the laser perturbation of the atom, has been found to be the Floquet
prescription. This Floquet approach, with its predicted infinite set of periodic states,
is considered, by the authors, to be superior to the more traditional time-dependent
Perturbation theory with which it was compared, because it provides a very concise
description of projectile-atom collisions in a laser field. Unlike the time-dependent
Perturbation theory, the Floquet prescription exactly describes the location during the
collisional sequence of events at which photons are absorbed and emitted. From section
4, there are two distinct photon absorption and emission processes, allowed within the
Floquet approach. The first being absorption and emission by the projectile, during the
projectile-atom interaction (e,A,fiw), and the second being absorption and emission by
the atom, well before and well after the projectile-atom interaction, (A,hw). The laser
perturbation (e,iw) of the projectile was also acknowledged in this work, in the form of
Volkov dressed projectile wave functions. It has however been shown that these projectile
states have very little effect on the state-to-state cross sections, when summed over all
possible final projectile energies consistant with a given projectile energy. These dressed
wave functions also gave no indication of allowing photon absorption or emission by the

projectile, before and after the projectile-atom interaction.

This work has also shown that the Floquet treatment provides cross sections with some

very distinct, interesting and new features, the most important of which are summarized
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below:

(a): When there is significant coupling between the atomic states, the Floquet
approach requires at least a third order approximation in the dressed atomic states, to
attain convergence in the state-to-state cross sections over the full range of field strengths
studied in this work. This convergence in the higher order dressed states is critical, since the
first order approximation does not even yield a qualitative indication of the overall variation
of the converged cross sections with field strength, and a second order approximation is
often not much better. This indicates that the contribution to the cross sections from the
higher terms in the atomic dressed states are important.

(b): The Floquet cross sections display a laser phase dependence of é,. It has also
been shown that for comparison with experiment, it is necessary to take an average of the
state-to-state cross sections over this phase, from é, = 0° to 360°.

(c): For a third order approximation the Floquet dressed atomic states can be written

in the general form.

|S) = A|2S,n) + Be'*|2Py,n+1) + Be™"* 2Py, n~1)
+ Ce® |28, n+2) + Ce % |25,n-2)
+ De® (2P, n+3) + De™ %% 2Py, n —3) (57)
and
|P) = A]2Py,n) + Be® |26, n+1) + B |28, n—1)
- (2P, n+2) + ('e =120 2Py, n-2)

+ D128 n+3) + De™ 8|28, n-3) (57)
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If these dressed atomic states S and P are plotted against field strength then the
dressed states practically exchange intrinsic zero field characteristics as the field strength
rises. Eventually the dressed state S will have a greater 2P character than the dressed state
P. Despite this character interchange of the dressed states, the 15-2S state-to-state cross
section never rises a.ove the 15-2P, state-to-state cross section when the phase averaged
1S-2S and 1S-2Py cross sections are plotted against field strength. This is demonstrated
in Fig.17 for electron hydrogen collisions using Floguet dressed atomic states. It should
be noticed that the 15-2S and 15-2P¢ cross sections have the same value, at precisely the
same electric field strength that the dressed states S and P have a 50:50 composition of 2§
and 2P, field free states.

Where ever possible, numerical calculations are based on both the Multichannel
Eikonal Treatment and the Born-Wave approximation. Both treatments produce similar
qualitative variations to the cross sections with electric field strength, and any quantitative
difference tends to orginate from the difference between the field free scattering theories

adopted.
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FIGURE AND TABLE CAPTIONS

Figure (1): Vector potentials Aocos(wt + &,) and .. ... ... A,coswt, for a

monotonic plane polarized laser field of frequency w, positioned in time relative to the

orbit’s pericenter at time t = 0.

Figure (2): A restricted two state Floquet matrix for the 2S and 2P, states of a hydrogen
atom in a laser field, is shown for Floquet N2 n=-1, 0, and 1, where an unrestricted matrix
would have Floquet N2 up to toc. The matrix is diagonalized to determine the “Quasi”

energies (), and the dressed atomic states 1.

Figure (3 a-c): Radial distribution functions of the dressed atomic states S and P, for
a third order Floquet dressed hydrogen atom, are compared for increasing electric field

strengths of a monotonic CO, laser field of photon energy fiw = 0.0043au.

Figure (4): The percentage 2P, component vs field strength, of the dressed atomic states

S

and P _ _ _ __ , are compared for a hydrogen atom in a laser field of photon

energy hw = 0.0043au.

Figure (5): Energy level diagram, £ = Ey + hw, of the hydrogen dressed atomic states S

and P at a photon energy of iw = 0.0043au.

Figure (6): Cross sections vs field strength for the 15-2S and 1S-2Py transitions, (a) and (b)
respectively, in e -H(1S) collisions in a laser field, using Floquet dressed hydrogen atoms
and a Born-Wave approximation, are compared over a range of orders of approximation
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for the Floquet dressing (.. __. =15, .. =92, _____ = 3¢ and

= 4th order) at a photon energy hw = 0.0043au and é, = 0°. The laser perturbation is

included for the atom only.

Figure (7): Cross sections vs field strength for the 15-2S and 1S-2P, transitions, (a) and
(b) respectively, in e™-H(1S) collisions in a laser field, using Floquet dressed hydrogen
atoms and a Multichannel Eikonal Treatment, are compared over a range of orders of
approximation for the Floquet dressing (. .. __. =1%, . =92 _____ = 3rd

and = 4th order) at a photon energy Aw = 0.0043au and §, = 0°. The laser

perturbation is included for the atom only.

Figure (8): Cross sections vs field strength for the 1S-25 and 1S5-2P, transitions, (a)
and (b) respectively, in e”-H(1S) collisions in a laser field, using Perturbative dressed
hydrogen atoms and a Born-Wave approximation, are compared over a range of orders of
approximation for the Floquet dressing (- _ ___ _ =1%, . =98, . =

= 50 order) at a photon energy hw = 0.0043au. The

laser perturbation is included for the atom only.

Figure (9): Cross sections vs field strength for the 15-2S and 1S-2P, transitions, (a) and
(b) respectively, in laser assisted e™-H(1S) collisions using Perturbative dressed hydrogen
atoms and a Multichannel Eikonal Treatment, are compared over a range of orders of

approximation for the Floquet dressing (. —__ .. _ =15, _ __ =2 =

_ = 5% order) at a photon energy hw = 0.0043au. The
laser perturbation is included for the atom only.
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Figure (10): The percentage 2Py component vs field strength, for the dressed states

S

and P _ _ _ __ , are compared for both Floquet and Perturbative dressed

hydrogen atoms, (a) and (b) respectively, in a laser field of photon energy hw = 0.0043au.

Figure (11): Cross sections vs field strength for the 1S-2S and 1S-2P, transitions, (a) and
(b) respectively, in laser assisted e™-H(1S) collisions using third order Floquet dressed

hydrogen atoms and a Born-Wave approximation, are compared over a range of phases 4,

( =0%_____ =92.5° .. .. =45°, . . —675°and . ____ =

90°) at a photon energy hiw = 0.0043au. The laser perturbation is included for the atom

only.

Figure (12): Cross sections vs field strength for the 15-2S and 1S-2P transitions, (a) and
(b) respectively, in laser assisted e”-H(1S) collisions using third order Floquet dressed
hydrogen atoms and a Multichannel Eikonal Treatment, are compared over a range of

phases &, ( =0%__.__.._ = 22.5°, .. ... .o=45° .. = 67.5°and _ ___

-—_ =90°) at a photon energy fiw = 0.0043au. The laser perturbation is included for

the atom only.

Figure (13): Cross sections vs field strength for the 15-25 __ and 15-2P¢ _ _ _

- - transitions in laser assisted e™-H(1S) collisions using third order Floquet dressed
hydrogen atoms are compared in the Born-Wave approximation and the Multichannel
Eikonal Treatment, (a) and (b) respectively, at a photon energy hw = 0.0043au. The cross
sections are an average of phase dependent cross sections for 6. = 0° to 90°, and the laser
perturbation is included for the atom only.
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Figure (14): Cross sections vs field strength for the 15-25 _______ and 1S-2P, _ _ _ _
- transitions in laser assisted e™-H(1S) collisions using third order Perturbative dressed
hydrogen atoms are compared in the Born-Wave approximation and the Multichannel
Eikonal Treatment, (a) and (b) respectively, at a photon energy hw = 0.0043au. The laser

perturbation is included for the atom only.

Figure (15): Cross sections vs field strength for 15-2S and 1S-2P, transitions, (a) and
(b) respectively, in laser assisted e”-H(1S) collisions using third order Floquet dressed
hydrogen atoms and a Born-Wave approximation are compared with the laser perturbation

included for the atom only ( ) and the laser perturbation included for both the

atom and the projectile, where the later cross sections are a summation over a range of
final projectile energies (. . = +20kw,... ... . = £25hw and _ _ _ _ _ = +30hw
about the field-free final projectile energy). The phase é,, = 0° and the photon energy

hw = 0.6043au.

Figure (16):. Cross sections vs field strength for 15-2S and 1S-2P, transitions, (a) and
(b) respectively, in laser assisted e -H(1S) collisions using third order Floquet dressed
hydrogen atoms and a Born-Wave approximation are compared with the laser perturbation

included for the atom only ( ) and the laser perturbation included for both the

atom and the projectile, where the later cross sections are a summation over a range of
final projectile energies ( __ __ = +20hw, = =25hw and _ _ _ _ .. = +30hw
about the field-free final projectile energy). The phase é,. = 90° and the photon energy
hw = 0.0043au.
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Figure (17): Cross sections in e™-H(1S) collisions are compared against the 2Py component
of the dressed atomic states, (a) and (b) respectively, over a range of electric field strengths
for third order Floquet dressed hydrogen atoms in a laser field. The cross sections 15-25

and 15-2P¢ _ _ _ - _ are an average of the phase dependent cross sections over
a range of phases from é, = 0° to 90°, using a Multichannel Eikonal Ttreatment. For the

percentage 2Py component _______ represent the dressed state Sand _ _ _ _ _ represent

the dressed state P.

Table (1): “Dressed” transition amplitude elements Ty, final projectile energies ;—“k"}
and coefficients of the “dressed” transition amplitude T}, within the “measured” transition

amplitude T s25.




Table (1): “Dressed” transition amplitude elements T),. final projectile energies %Az,
and coefficients of the “dressed” transition amplitude Tp, within the “measured” transition
amplitude T;sas.

“Dressed” Final Projection operator
transition amplitude projectile probability amplitude
matrix elements T}, energy from Tpq onto Ths3s
Ty = AViszs 5%’02 = 51,;’635 A
T = BVisap,e™"% -};k} = 5‘;1:35 + hw A
Ta = BVisapetioe {;k} = #kgs - hw A
Ty = AVisap, ilﬁk} = Eliikgn; Betitv
Ty, = BVys5e™*% -zl‘;kz = Elﬁkgf’o + Aw pe+‘6v
Ty = BV sasetd> ﬁk} = Elﬁ'k;t’o - hw Betéo
Ty = AVisap, f;k’ = ilﬁ'kg?o Be-

Ty = BViszse™ %;k} = ﬁkg,,o + R Be™'6-
Ty = BV, gpgeti®e 5‘;1&:2 = ﬁ’% - hw Be~-




Apcos(wt+6,)—>

FIGURE 1:

L <—Agcoswt

t=0
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Figure(1): Vector potentials A, cos(wt — ¢_) and Agcoswt. for a
monotonic plane polarized laser field of frequency . positioned in time relative to the

orbit’s pericenter at time t = 0.
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Figure(4): The percentage 2P, component vs field strength. of the dressed atomic states

S and P _ _ __ _ ., are compared for a hvdrogen atom in a laser field of photon
energy hiw = 0.0043au.

FIGURE 4: SMITH AND FLANNERY
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FIGURE 5: SMITH AND FLANNERY
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Transport-Collisional Master Equations for Termolecular Recombination

M. R. Flannery
School of Physics
Georgia Institute of Technology
Atlanta, Georgia 30332-0430

Abstract

Sets of Transport-Collisional Master Equations are developed for the microscopic distribution n(R, E, L)
of pairs over internal separation R, energy E and orbital angniar momentum L of (A-B) pairs in a background
gas M of variable density. Expressions are also provided for the rate of recombination of A and B as a
function of gas density. Analytical solutions for the pair distributions n and microscopic probabilities for
recombination are obtained in the classical absorption limit. They pertain to exact (A-B) trajectories under
general symmetric interaction V(R) between A and B and are applied to ion-ion and electron-ion collisional
recombination in a gas. A classical variational method is also presented.

1. Introduction

In previous papers! ~4, the rate a for termolecular recombination,

a
A+B+M~~ AB+M (1.1)
kq

of species A and B (assumed structureless) in a low density gas M was considered by exact (quasi-
steady-state! and variational?) treatments and by various approximate methods based on energy-diffusion®,
bottleneck’ and electrical analogues®. The exact treatmeats!? involve the solution of either a one-
dimensional set of integral equations for the relaxation of the {A-B) pair distribution n(E) in relative energy
E or a variational determination of n(E) with respect to external parameters varied to yield the minimum
rate a. Both procedures’? are equivalent to a quasi-steady-state distribution n(E) among highly excited
levels E. lon-atom association® at low gas density involves the solution of a two-dimensional set of integral
equations in E and in relative (orbital) angular momentum L of the associating (A-B) pair.

The aim of this paper is to develop the appropriate generalization to all gas densities, when there is
non-equilibrium not only in the E and L degrees of freedom but also in the (A-B) internal separation R.This
inhibited relaxation arises from the increased difficulty of transport of A towards B by diffusional-drift
through the gas M. The two particle phase-space distribution n(R, p;1) of (A-B} wair- with respect to R
and relative (orbital) momentum p = MgV is then governed by the microscopic ivansport equation®,

d 6
En(R, p;it) = 8_7: +v:Vpn—- VRV Vpn (1.2a)
on .
= E + [Vﬂ . (nv)]p - VRV . [Vpn]R (12b)

where V(R) is the energy of mutual interaction between A and B with reduced mass M,p. This transport
rate is then set equal to the input-output rate for the net collisional production at fixed R of state p from
all states p’ of the pair (A-B). A Boltzmann equation for n(R, p;t) is then obtained® and is valid for dilute
concentrations of reactants A and B in a gas bath M of general gas density N so that (A-B) collisions with
the gas M provide the dominant state changing mechanism. Naumann’ has recently reproduced the same
basic equation® via an alternative stochastic route.




The next development® was the transformation of (1.2) for symmetric V(R) to the more natural form,

%n(R, B, L%t) = — + —— [R*n(R, E, L;)vg] BoL3 (1.3)

for the resulting R-symmetric (A-B) pair distribution n,(R) = n(R,E,,L?) over R, E, and L?. The
radial speed dR/dt is vg so that the microscopic radial current of pairs expanding and contracting at R is
J: = 4w R%n,vp per unit interval dE,dL?, which is conserved and which depends only on E, under equilibrium
in R, E, and L? (Appendix A). The collisional RHS of the Boltzmann equation® may now be written in the
collisional input-output form,

Edzn(R, E, L}t = d"-‘Tfﬂ =~ / dE; / L} [na(R)vig (R) — ng (R)vy.(R)] (1.4)

where v,; is the frequency per unit dE,dL? of state changing E,, L, — Ej,L; transitions produced by
collision between the (A-B) pairs in state i and the gas species M and the integrations are over all E; and
Ly accessible at a given R.

The above two developments®® of (1.2) and (1.3) now facilitate the constri ~tion in this paper of two
sets of Transport-Collisional Master Equations for the pair microscopic distribution n(R, E, L?) and the
L?-integrated distribution n(R, E). The sets essentially represent three-dimensional (R, E,L?) and two-
dimensional (R, E) integral equations respectively. The two-dimensional (R, E) set is however composed
of two separate sets, each valid in exclusive regions of (R, E) space which become coupled via boundary
conditions at the (R, E)-interface. The full sets are in general difficult to solve by customary numerical
algorithms.

In this paper analytical solutions are obtained in the absorption or classical limit, when the back-coupling
terms vy, in (1.4) are consistently neglected. Analytical expressions are then derived for the probability
P4(Ro, E, L?) for association of (E, L?)-pairs with internal separations R < Rp and for the various 12—
and E-averaged probabilities, P4(Ro, E) and P4(Rp) respectively, as a function of gas density. Not only
does this analytical route provide further detailed insight into recombination but also the strategy therein
suggest procedures valuable for eventual detailed numerical solution of the full Transport-Collisional Master
Equations.

In this paper the recombining species A and B are assumed structureless and the recombination proceeds
via collisional and transport relaxation in the relative (A-B) coordinates R, E and L? in the (atomic or
molecular) gas. Even with this simplification the resulting set of three-dimensional transport-collisional
equations are quite complicated. Generalization is however required to cover the possibility of recombination
process to cover the possibility of recombination process

Xef 4+ Cl™ + Xe — XeCl + 2Xe (1.5)

where the new two-body tidal mechanism introduced by Bates and Morgan®®,

{Xei (v, J,) =~ CI"}p, — {Xed (vs,J5) — CI"}5, — XeCl + Xe (1.6)

is mediated by collisions with the third bodies M and was shown by their recent computer simulation'®
to be necessary in order to explain the observed!! production of XeCl rather than Xe,Cl as implied by
(1.1). Although the ‘two-body’ rate of (1.6) involving orbital — internal energy conversion can in principle
be added directly to the collisional RHS of (1.4), the interaction V(R) between Xej — CI™ is however
orientation dependent and the transport side (1.3) must be so modified. Inclusion of this aspect within the
present theory is feasible, but implementation involves an additional order of complexity to what is already
a multilayered structure. The detailed inclusion of orientation dependent (A-B) interactions V(R) will be
considered at a later stage.

Since the time-dependent set of equations based on (1.3) and (1.4) can be reduced to a time-independent
set via a quasi-steady state (QSS) criterion for highly excited bound (A-B) pairs, some background discussion
of QSS is useful.




1.1 Quasi-Steady-State (QS3) Approximation :

Association (1.1) which proceeds at forward rate a(cm3s™!) is coupled with the reverse process of
dissociation which occurs at frequency k4(s~!). Both processes are naturally time dependent and the
measured rate constants a and ky satisfy

-‘-iNAT'tB%-Q = —aNA(t)NB (t) + kd]VAB(t) (1.7)

where N4, Ng and N4p are the time varying concentrations (cm™3) of reactant and product species. The
rate constants a and k4 can however be determined by a time independent procedure?® in which association
and dissociation can be treated separately. N N

Association emerges’*® in the time independent picture as if equilibrium concentrations N4 and Np of
the dissociated species A and B with relative energies E in the range 0 < E, < oo (which defines a reactant
block C) are collisionally transferred via an intermediate block £ of highly excited states in the energy range
0> E; > —S to a product block S of fully stabilized molecular levels in the energy range —S > E > —-D
where -D is the lowest energy level of the molecule AB (cf. Fig. 1 of ref. 1). The energy level -S lies within!
at most 20kT below the dissociation limit. The intermediate block £ is in quasi-steady state (QSS) since
collisions occur in a time scale much shorter than the characteristic time for overall recombination and the
stabilized product block S is considered to have zero population in the time-independent treatment. The ¢
block is depleted and the S block is filled at a rate a N4 Np via the steady state conduit of £-block levels.

Dissociation emerges"® in the time-independent picture as if a thermal concentration N4p of pairs in
the S block are collisionally transferred through block € to block € maintained at zero population. The rate
constants so deduced satisfy the detailed balance relation,

QNAJVB = kdj\.f,qa. (1.8)
The QSS procedure is equivalent to seeking the lowest eigenvalue Ag = k4 in the expansion of the time-
dependent distribution n;(t) of level i in terms of the basis set e~*s! with j=1, 2, ... which define various

timescales of relaxation. After initial transients described by the rapid time decay dependencies exp(—A;t),
exp(—Azt), etc. the internal degrees of freedom then quickly relax into a quasi-steady-state which is slowly
decaying as exp(—kgt). It is this final relaxation which is of interest here.

2.1 Basic Theory: Exact Rate in Collisional and Transport Representations

On assuming that {A-B) pairs in the block £ of highly excited bound levels are in quasi-steady-state,
the rate of collisional termolecular recombination is the collisional net current,

- - o L, R} E L}..(R)
aNalip = / dE, / dL? / dR ( / dE; / di? [n,(R)u,,(R)-n,(n)u,,(}z)]) (2.1)
E 0 s V(R) 0

which is constant across an arbitrary level £ = — | F | embedded in block £&. When F = 0, (2.1) is
simply the net collisional rate of production of bound pairs, or depletion rate (1.8) of dissociated pairs and is
appropriate for pure (A-B) Coulombic attraction V(R) = —e2/R which does not support any bound levels
with positive energies.

Here n,(R) = n(R, E,, L?) and n,(R)dE, dL? dR is the number density of (A-B) pairs with internal
relative energy E,, internal relative angular momentum squared L?, and internal separation R in the
interval dE, dL? dR about (E,,L?,R). The frequency of collisions with third bodies for (E,,L? —
Ey +dEy, L} + dL?) transitions at fixed (A-B) separation R is 7 (R)dEsdL3. Also R denote the orbit’s
pericenter (—) and apocenter (+) or turning points of radial motion under the effective interaction

L!
Z.MABR;‘;

The maximum value L,,, of angular momentum L = R X p, accessible at fixed F, and R is Rp, and is
determined also from E, = V,(R) so that

V(R) = V(R) +

(2.2)




L% .(R) = 2M,pR*[E, - V(R)] = R*p? = M3, R*}(R), (2.3)

where p, is the momentum for relative (A-B) motion. with speed v,. The maximum L? accessible overall at
given E, is either infinite for dissociated paits (E, > 0) or is L?) given by (2.3) evaluated at the radius Ro
for bound (E, < 0) circular orbits (where 3V; /R = 0). In thermodynamic equilibrium at temperature T
the distribution of pairs over R, E, and L? is (Appendix A),

- - ﬁAﬁBe‘E‘/kT 2r
n(R)=%(R, E,[}) = (@rMap kT Roug (2.4)

where the radial speed vy of relative (A-B) motion is determined from the energy relation,

1 ) L? 1 )
=2 v i /(R). 2.5
E. = ;Mapvr + V(R) + S 5 M4 (R) + V(R) (25)
The one-way equilibrium collisional rates,
Cit(R) = ni(R)vrs(R) = Ay (R)vy(R) = Cri(R) (2.6)

satisfy the principle of detailed balance. The recombination rate (2.1) then vanishes under equilibrium
conditions. The rate (2.1) with E = 0 may now be rewritten in terms of the fractional distribution,

pi(R) = n,(R)/7:(R), (2.7)

which represents the departure of i-pairs from thermodynamic equilibrium, as

- - ) oo c0 0 R’p;
aN4Np = / dE, / dL? / dR dE; / dL} [p,(R) - ps(R)] Cis(R). (2.8)
0 0 T V(R) o
This rate may alternatively be rewitten in {erms of,
. R)

PS(R)=1- M%i _1_~(B) 2.9
f‘A( ) Y Pz(R) ( )

introduced here as the probability for subsequent collisional stabilization of an f-pair collisionally produced
in a bound level f = (Ey, L3) from a dissociated i-pasr. Then,

- - oo [ -] 0 Lzm
aNsNg = / dE, / dL? / dR dE; / ’ n,(R)vs (R)P},(R)ALE, (2.10a)
0 o R; V(R) 0

in the collisional represeniation, which in turn can be rewritten as,

00

-~ o~ co Rgp: Ry 0 L;m
aN4Ng = lim / dE, / dL? / dR dE; / n,(R)vs(R)P},(R)dL2, (2.10b)
R 0 0 R V(R) 0

where p = 2M 4p(E, — V(Ro)). Provided Ry is large enough so that equilibrium in (E,, L?) is collisionally
maintained then the distribution p,(R) = ps(R) = p(R) for R > Ry is independent of (E,, L) and Pﬁ of
(2.9) then vanishes for R > Ry. As Rg ~— oo, then p(R) — poo, the normalized distribution maintained to
preserve steady-state.

From (1.3) and (1.4) the micrescopic steady-state distributions satisfy the collisional-transport set of
Master equations®

[~ <]

1 8

2,2 i —
t5r5g (RE(R) e [}, e = —f

L, :
dE; / ! dL} [nf(R)u,f(R) - n?(R)V,.(R)] (2.11)
V(R) 0
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when 7} (R) and n” (R) are the respective distributions of pairs which are radially expanding (+) or radially
contracting (~) at R, ie. n* and n™ are respectively characterized by postive (vg > 0) and negative (vg < 0)
radial speeds vp. These distributions are coupled via the boundary conditions,

n (R — oo) = A7 (R)

o i (2.12)
n, (Rt )= n?(Rt )
at infinity and the pericenter R, for dissociated states i, and by
- - — + -—
ny (By) = ns (Ry) (2.13)

ny (R}') = 1;}'(12;)

at the apses R}t of bound orbits {. Within each set, the collision frequency 1,5 couples the distributions
aF with all (Ey, L?) state-distributions. The two sets of integro-differential coupled equations (2.11) for n}
and n, are coupled via their boundary values (2.12) and (2.13). Simple as (2.11) appears, this general class
of partial integro-differential equations involving boundary-value conditions are notoriously difficult to solve.
The Volterra type equation (2.11) has as yet not been solved theoretically or numerically. Simpler versions
of (2.11) are currently receiving much attention in the mathematical literature!2.

Addition of (2.11) for n} and n provides the microscopic continuity equation in terms of the microscopic
net radial current,

J.(R) = J(R, Ei, L?) = [n} (R) - n] (R)Jvr (2.14)

across R as,

18 (., - ® Lim
T RO =) I llg gy == [ o [ 48 Ryss (B) < R (2350)
or as,
o BB =~ [ aE /Lg"'dzﬁ [6i(R) - py (R} Cuy(R) (2.15b)
R28R ! V(R) TJs T b1 AER '
which is expressed in general terms by,
o0 L}m
V.3, =n;i(R) f dE; f dLivg(R)P},(R). (2-15¢)
V(R) 0

Collisional depletion and production terms involve the summed distribution n, = (n] + n;") which
appears on the right hand sides of (2.15), while the difference (n] — n]) appears on the transport side.
Upon integration of (2.15) between R, and oo, the rate (2.1) or (2.8) across the dissociation limit E = 0
may then be expressed in the equivalent iransport representation as,

Ro—+ o0

o~ o LHH
aN4Np = lim / dE; / dL? [4nRZR] (Ro)vr] o] (Ro)PA(Ro) (2.16)
0 0
where the one-way equilibrium fAux {Appendix A)
4w R’ vp = 4n* N Npe B /%7 )(2n My ph T2 (2.17)
across R is, by (2.4) independent of R and L?. Also the normalized distributions are,

n*(R,E,, L?) _ n¥(R)
a%(R,E, L?) ~ 7X(R)

+

i (R)= p* (R E, L) =

(2.18)




and

'P,A(R)zl-nf(R)—l-—pf(R)

n(R) p(R)
is introduced here as the probability for association within a sphere of radius R of all contracting i-pairs which
enter the R-sphere. Of the radial microscopic flux 47R?n] | vg | at R only a fraction P/(R) eventually
becomes associated as exhibited by (2.16).

The set of Master Equations (2.11) yield, for the normalized distributions (2.18) to

1 8 (0w 3 _ /
@k (REA®) =% ]

(2.19)

o0

Ly
ary [ an} [ (R) - o ()| C5B) (2.20)

where the one-way equilibrium current 3'1' = 'ﬁf vR, and where the forward and backward one-way equilibrium
collisional rates between levels ¢ = (E,, L?) and { are,

C33(R) = 7 (R (R) = 37 (RJvs.(R) = CL,(R) (221)
which satisfy detailed balance.Then (2.20) with (2.17) reduces to,
a + R [ Lf"!
[Pr_(_)] =7 / dE / 4z, [0 () - o} (B)] (s (B)/0m) (2.22)
OR gz vy o

This set is solved according to boundary conditions,

o (R—»)=1 p (RE, —o0)=1 (2.23)
and
P (RD) = o1 ()
o (R]) = p] (R))
which in effect serve to couple both () sets of integro-differential equations (2.22). Since L? = (2mE,)p?

where p is the impact parameter, then the transport representation (2.16) of the rate can be rewritten as
the (Ry — o) limit of

(2.24)

8kT 17 p reo(c,Ra) 4
a= [ ] / €e”’ de/ 2xp dp p; (Ro)P(Ro) (2.25)
TMas o 0

where ¢ = E, /kT, and where

P = Ri[1 - V(Ro)/E,] (2.25)

is the maximum impact parameter accessible for formation of pairs with R < Ry at energy E,.

Many mathematical complexities exist in determining the theoretical and numerical solution of the
general class of equations subject to boundary (not initial !) conditions, as represented by (2.22)-(2.24).
While investigations into appropriate numerical procedures are currently in progress, it is important now to
contruct simplified models suggested by the respective collisional and transport forms (2.10) and (2.16) for
the rates and reported in the following sections with the aim that rew insight and conclusions will emerge,
without the necessity of detailed solution. The models will then in turn suggest various procedures valuable
for eventual detailed numerical solution.

3. Improved Classical Treatment

Treatments which include forward collisional couplings v, and neglect backward collisional couplings
vy, are termed classical in the sense that the set of coupled equations (2.11) or (2.20) are then replaced by
the two sets of uncoupled equations in n and n, which contain only absorption (loss) terms and which can
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be solved in closed analytical form. Classical solutions in the sense as defined here therefore only include
collisional absorption from dissociated states (E;, L?).

8.1 Analytical Rate with Collisional Absorption. Physical Assumption:

Neglect the redizsoctation terms nyvy, which collisionally populate continuum level i in (2.1) from the
bound states { for R < Ro. Thus Pj,(R) the stabilization probability (2.9), is unity for R < Ro. Assume
that thermodynamic equilibrium in E,, L? (but not in R) is collisionally maintained at fixed R for pairs
w1th R > Ry, so that pi(R) = ps(R) for R > Ry is independent of (E,, L?). The stabilization probability

(R > Ro) of (2. 9) then vaniskes. Thus Ro is assumed to be sufficiently small that the net effect of
colhsnons at R < Ry is pure absorption, depleting the dissocation channels, and yet is sufficiently large that
the net (input-output) effect of collisions at R > Ry is to maintain thermodynamic equilibrium in E, and
Lf, whereby preveniing any stabilization from occurring outside Ry.

The total frequency fcr collisional destruction of continuum states i in (2.11) may be taken for small
R < Rp as the toval collisivnal frequency in (2.10) for direct formation of all bound levels, ie.

-] L?u 0 Lf,,
w(R) = / dE, /0 " v (R)ALE » / dE; fo " viy(R)AL2 (3.1)

V(R) V(R)

In this approximation the bound pairs are now fully stabilized against redissociation for R < Rp and are
therefore considered as the recombined products. The recombination rate (2.9b) then reduces to,

co Ropo
aN4Np = a(Ro)n(Ro) = fo dE, /0 ? dL? /R [47R*n,(R) | vr |) '(R?dR (3.2)

in the collisional representation. Even though both representations, collisional (2.10) and transport (2.16),
are equivalent, physical insight and algebraic development is facilitated more readily via the transport form.

8.2 Analytical Solution for R < Ry Nonequilibrium in E,,L? and R.

On ignoring therefore, the backward rates n* 1 Vs for collisional repopulation of level i, each set of coupled
Master equations (2.11) reduces to

d
:I:-I-ﬁg-é [Ii’zni'vR]E"L3 = —n,i(R)u,(R), R< Ry (3.3)
for pure absorption within R < Ry. Here and below, vg is now used to denote the positive radial speed
| vg | Eqns. (3.3) are coupled by boundary conditions (2.12) and (2.13). Since p* = n= /5%, (3.3) is then

80 (R) __u(R) 4
[ aR EL’—? R p,,R<R0 (34)

which follows also from (2.22). When integrated subject to boundary conditions p] (Ro) at Ro and
p7(R;) = p}(R]) at the pericenter R (3.4) provides the distributions

Coon n(R) B u(R) o)
P (R)= XTI (Ro) exp [-/R o dRJ (3.5)
for pairs contracting at R, and
_n(R) _ R u(R)
Pl (R) = R - (&)EXP[ /R —
= p; (Ro) exp {-— /Ro Kzﬂ?-)-dR} exp {— jl{Rn -V’—(—I-{—)-dR} y B < Ry, (3.6)
R TR R, ¥R
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for pairs expanding at R, respectively. It is now simpler to insert these distributions into the two-dimensional
transport representation (2.16) rather than into the equivalent three-dimensional collisional representation
(3.2). In either case however the rate reduces to,

- -~ oo R3ps
aN4Np = / dE, / dL? [47R3%] (Ro)vr) o] (Ro) P (Ro) (3.7)
0 0
where,
pg =2m|[E; - V(Ro)] (3.8)
and where the probability (2.19) for association within Ry of (R < Rp) pairs now takes the simple form
Ry
PA(Ro)=1-exp {—f V—'(—IQdR} (3.9)
Ry 'R

for absorption within the segment R, < R < Ry of the trajectory enclosed by the sphere of radius Ry. The
integrand,

u(R)

YR

ds,
dR = vi(R)dt = 3= = a1, (3.10)
AN
is the elemental probability that A-B collides with M during time interval dt, or within trajectory element
ds, of their actual (E,, Lf)-orbit s, for A-B relative motion at speed v,. Hence,

ARy =1~ PR [ fTeds
PA(Rg) =1 p;_(Ro)_[l p(}g ,\)] (3.11)

is simply the probability for (A-B)-M collisions with microscopic free path length A, = v,/, towards any
collision within the portion of the orbit enclosed by a sphere of radius R,.

Binary Decomposition: When the (A-B)-M collisions at a given pair separation R{A-B) can be
decomposed as binary (A-M and B-M) collisions (an excellent decomposition for ionic species A* — B~ in
a neutral gas), then v, = 1,4 + 1,5 so that /\‘"1 = A,-'Al + ,\"B‘. Then (3.11) factors as,

PA(Ro) = 1- 5458 (3.12)

which decomposes as,

P/(Ro) = PA(Ro, \a) + PA(Ro, M) ~ P (Ro, \a)P2(Ro, MB), (3.13)
where the probability of survival against either (A-M) or (B-M) collisions within the segment is

Ro
Sa,B = exp {— dsz/'\:A.B} : (3.14)
Ry

This decomposition holds only at this (£, L) microscopic level (cf. §3.3). The corresponding probability
for association arising from an individual collision within the trajectory is

P(Ro,haB)=1-Sap (3.15)

The above binary assumption leads quite naturally to the decomposition in (3.13) of the (E,, L?)
microscopic probabilities for individual collisions. Since the sum P#(A4) + P/(Ap) includes the probability
PA(M4)PA(Ap) for simultaneous collisions twice, the simultaneous probability must be subtracted as in
(3.13). Note that the above solutions (3.5) and (3.6) of (3.3) for the normalized distributions p* and
(3.11) for the microscopic probability of association show quite directly that these E,, LZ-pairs are not in
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equilibrium with respect to L? in this classical approximation since pf are clearly dependent on L. The
distribution p] (Ro) of pairs contracting at Ro may be in L?-equilibrium.

8.3 Averaged Association Rates and Probabilities
With the aid of Appendix A, the rate (3.7),
-~ ~ oo Ripg
aN4Ng = f dE f dL? [4xR*%~(Ro, E, L*)vr] p~ (Ro, E, L*)P*(Ro; E, L?) (3.16)
0 0

may be rewritten as,

o0 PH
a= wF/ €e”* df/ 0p,'(Ro,E,p)P"(Ro;E, p)dp’? (3.17)
0 0

where p is the impact parameter associated with the (E,, L,)- trajectory. Here L2 = (2Map E)p?, ¢ = E/kT,
7 is the mean speed (8kT/nMp)'/? and p3 = R2[1 — V(Ro)/E]. On performing the L? and E-integrations,
then with the aid of Appendix A,

a= (N'ANB) - /O " aE [411235- (Ro, E)g] ¢~ (Ro, E)P*(Ro, E) (3.18)
= ﬂ:‘/mee“ de pt p~(Ro, E)P*(Ro, E) (3.19)

0
= Tphaz ¥ (Ro)P4(Ro);  Phuax = R3[1 - V(Ro)/kT) (3.20)

where the integrated densities and distributions are given by

R3p;
n~(Ro, E) = f n™(Ro, E: L2)dL? = p~(Ro, £)7~ (Ro, E) (3.21)
0
and,
n"(Ro) = / n™(Ro, E)dE = p (Ro)fi~(Ro). (3.22)
4]
Also,
P
7pep” (Ro, E)P#(Ro,E) =7 / ¢~ (Ro, E, p)P4(Ro; E, L*)dp? (3.23)
4]
and
oo
xp2 .0~ (Ro)PA(Ro) =/ ce™¢ de wplp~ (Ro, E)PA(Ro, B), (3.24)
0

define the appropriate L? and (L?, E,) averages, P“(Ro, E) and P4(Ro), respectively, of the original
microscopic association probability (2.19).
In the absorption limit,

Re ds,
PA(Ry,E,L?) = 1—exp ~}[ 0 (3.25)

R

and for general interactions V(R), analytical expressions for PA(Ry, E) and P4(Ro) can be deduced under
varicus equilibrium conditions.

For Ry sufficiently large, the distribution of pairs contracting at Rg is in equilibrium with respect to L.
Then




n- 2
n (R, E, %) = %n- (R, E) (3.26)

so that p~(Ro, E, L?) = p~ Ry, E) is now independent of L. The L-averaged probability in (3.23) becomes

4 _1/""’ _ _f“ﬁ 2_;_ (B E)
p (RO'E)-p?) A 1-exp s dp* =1 7 (Ro,E)’ (3.27)

If in addition the incoming Ro-pairs are also in equilibrium with respect to E so that p~(Ro, E) =
p~ (Ro). The E-averaged or macroscopic probability is then,

n* (Ro)
n”(Ro)’
Although the microscopic absorption probability (3.25) satisfies the rule (3.13) for decomposition

into probabilities for individual A and B collisions with the gas, the trajectory p and energy E-averaged
probabilities (3.27) and (3.28) do not satisfy this decomposition. That is,

PA(Ro) =

>}
/ ce™ dempiPA(Ro,E)=1- (3.28)
0

2
TPmaz

PA(Ro,\;E)#£1-(1-P)(1-P)=P,+ P, - P, P, (3.29)

where P, = P4(R,, A4;E) and P, = P“(Ro, Ap; E). The equality has always been tacitly assumed
in previous macroscopic treatments!®~!5, The breakdown is directly apparent from comparison of the
corresponding expr ssions derived explicitly for straight-line trajectories (E >» V(R) for weak interactions).
Here, the Thomson straight-line (E, p) microscopic probability!® is

P{(Ro; \ E — 00,p) = 1 - exp{~2(R} — p*)/?/2} (3.30)
with p-average!*,

PA(X;E — 00) = PA(X)=1— 2—;{—2[1 —e X (142X)); X = Ro/A (3.31)
which does not rigorously satisfy the decomposition rule (3.13). The decomposition (3.13) however is satisified
numerically fairly closely. While the Thomson microscopic probability (3.30) depends on L (via p), the L2-
average (3.31) is independent of E since E > V(R). The Thomson distributions within Ry are therefore
in E-equilibrium but not in L*- equilibrium. The distributions which yield (3.25) are in general not in
(E, L?)-equilibrium.

For ion-neutral (hard-sphere) collisions with constant (speed independent) path length A, = A then
(3.25) reduces to,

PA(Ro,E,L*) = 1 - exp [-L(Ro, E, L?)/A] (3.32)

where £ is the length of the segment of the (E, L?)-trajectory enclosed by the sphere. For (ion-induced
dipole) collisions at constant frequency v, = v then

PA(Ro, E,L*) = 1 - exp (~vT) (3.33)

where 7' is the transit time. Figure 1(a,b) illustrate the variation with X = R/A of the p? and (p?, E)-
averaged values (3.27) and (3.28) of the microscopic probability (3.32) associated with ion-ion recombination
under Coulombic attraction V(R) = —e?/R = —(R,/R)kT within a characteristic radius Ry = 0.408R, (cf.
§4.4 and ref. 4). Various analytical expressions for the microscopic segment length £ of the (E. L)-trajectory
have been derived in Appendix B (cf. (B6), (B9), (B15) and (B19)), together with corresponding L? or p?
aveiages (B31) for general interactions V(R).

As Eincreases, the p-averaged probability (3.27) decreases monotonically (see Fig. 1) from the parabolic
(E <« V(R)) envelope,
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PAX = Ro/\E—0)= 2/01 [y/\/l - y’]xy exp (—2X(1 - yz)llz) y dy, (3.34)

obtained from (B15b) for £ in (3.32) with (B22), to the straight line (£ 3> V(R)) envelope (3.31). This
monotonic decrease between the two limiting envelopes essentially arises from the decrease of the p?-averaged
segment L(E, p; Ro) of the enclosed trajectory from 2Ro (cf. B23) for parabolic motion (cf. B23) to 3Ro
for rectilinear motion. The envelopes increase initially with density N ~ A~! as the collision probabilities
2R/ and ;—Ro//\ in the parabolic and straight l'ne limits, respectively. For intermediate energies E the
gradients are confined to within these limits (cf. Fig. la, inset). Fig. (1b) illustrates that the E-averaged
probability (3.28) is graphically indistinquishable (to within three significant figures) from P4(Ro, E = kT)
and is much closer to the parabolic limit (3.34), than to the straight-line limit (3.31).

The use of (B19) for £ in (3.27) is universal in that the variation of P4(Ro, E) with Ro at a fized gas
density N, in addition to the above variation with N at a fixed Ro, can be illustrated also by Fig. 1 simply
by regarding the selected values of the normalized energy as values of €' = roe, and the absissa X as linear
in Rg. As Ry = roR. increases from zero, P4 follows for all ¢ the initial increase of the ¢’ = 0 parabolic
envelope and eventually falls onto the straight-line envelope. The Ry-variation of P is shown in Fig. (2a) for
E = kT at one density (f = R./A = 1) and in Fig. (2b) at several densities ranging from high to low.

There are as yet nc analytical results for the averaged probabilities (3.27) for P4(Ro, E) and (3.28)
for P4(Ro) for general V(R), not even for the Coulomb interaction. Figs. (la,b) are based on numerical
p*-integrations over Elliptic Integrals (Appendix B). New analytical expressions now will be developed for
general V(R) for the following two cases: (a) The low-gas density limit (when P — £/),) in §4.1 and (b)
The case of pairs in L?-equilibrium (§6.1).

4. Low Density Limit: Classical Analytical Rates and Probabilities Under Exact (A-B)
Trajectories

The association probability (3.11) tends, as N — 0 je. as A\,/R. — oo, where R, is a characteristic
length given by the outermost root of | V(R,) |= kT, to

Ro
PA(Ry, E,, L?) — % (4.1)
R7 1

which is linear in N. The transport form (3.16) of the classical rate then tends to,

-~ -~ o R:Pz Ra ds
apowNaNg = / dE, f dL? [4n R3] (Ro, E., L?)vr) T (4.2)
[ 0 R’ ]
which provides the required linear increase with N. Since the collision frequency,
w(R) [2(E, - V(R))/Map]*?
V,(R) = ( ) = [ ( ( ))/ AB] (4'3)

A A

is already linear in N via A,, the low-density limit of the collisional form is obtained from (3.2) by simply
setting n,(R) = #,(R), the zero-order approximation for all dissociated pairs, to give the low density N linear
limit,

R -] Rgpf, Rq
aLowNaNp = / dE, / dL? / [47R*%.(R, E,, L?)}(vi/A)dR (4.4)
o] 0 R

which is identical with (4.2) since dt = dR/vg = ds,/v,. Since the one-way equilibrium flux,
4r? N4 Np exp(~E,/kT)
(2rM 4pkT)3/?

across a sphere of radius R is independent of R and L, and since

4rR*% (R, E.. L?) |vr |=
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i = (2mE,)p’ (4.6)
in terms of the impact parameter p, then (4.2) is also
8T ]” 2 /°° ) /”" Ro gs,
QLow = ce” " de 27p d -— 4.7
Low [‘”MAB ; , g X (4.7)

where € = E,/kT is the normalized energy. The maximum impact parameter p, accessible for formation of
the Ro-complexes at energy E, is given by,

po =R} Po/(szz) =R} (1 - V(I;TRO)) (4.8)
13
Even when ), is independent of R and p, (4.7) involves knowledge of the length L(E, p) of the enclosed
trajectory as a function of E and p. For pure Coulombic attraction L(E, p) can be provided (Appendix B) in
terms of incomplete Elliptic Integrals of the first and second kind, but the double (E, p)-integration remaining
in (4.7) appears intractable. A more elegant approach is based on the recognition that the innermost double
integral of (4.7) is simply,

0 Ro Ro
21r/: pdp ds, = 47r/(2 R? [1 VI(?R)]dIi (4.9)

R, t

This identity is proven directly in Appendix B (B32-B36), but follows most conveniently by reversing the
order of the (LZ, R)-integrations in the collisional form (4.4) of the rate. Upon assuming A, is independent
only of L,, then (4.4) gives

- - oo Ro R’p}(R
apowNaNp = f dE, / 47 R%v, (dR/A,) / #.(R, E,, L)dL2. (4.10)
0 0 0
The LZ-integrated equilibrium distribution here is then the standard Maxwell-Boltzmann distribution,
. 2 [E-V(R)]V? = -
(R, E,)dE, = T ['—kT(—Z] N4 Npexp(—E,/kT)d(E, /kT) (4.11)
such that
- T 1M v
7 (R, E)vdE, = _SL] [] - (R)]NANBe e ¢ de, (4.12)
TMuB T

with the result that (4.10) then reduces to

8kT 1V2 po _ pRelE) V(R)] dR
a = ce”* de 4rR? [1 - ——] ———— 4,13
Low [WMAB] /o /o E. | M(R E.) (4.13)

Comparison with the transport form (4.7) provides the valuable relation (4.9) valid for all (curved)
trajectories under general V(R) when the radius R s independent of L,, but not necessarily of E,. When
A, and Rp are both independent of € then integration of (4.13) over e yields,

O Low = L;’;ZB]W / " g R’[ Vk( )]dR/A(R) (4.14)

Both (4.13) and (4.14) are exact (new) classical results for all trajectories under general V(R) valid when
the path length A, is or is not dependent of E,, respectively. The customary classical (Thomson straight-line)
result follows from the direct use of rectilinear paths in (4.7) or by setting E, >> V(R) in (4.13).




4.1 Averaged Association Probabilties
The rate (3.18) may also be written as,

pou N als = / [%ﬁ.(RO,E,)v,(Ro)Mng] PA(E,; Ro)dE, (4.15)
0

where PA(E,, Ro), the microscopic probability (4.1) averaged over p (or L?), is the probability for association
of an equilibrium number of E;-pairs contracting across Ro. By comparison with (4.12) and (4.13), the
probability at low gas density is given exactly by,

A(E, B) = L /’*"‘E" oy K@]JL
PA(E,, Ry) = =, 47R*|(1 | R E) (4.16)
where p3 is given by (4.8). Since the E,-averaged flux
® 1
/0 [zﬁ,(Ro, E,)v.-(Ro)41ng] dE, = npl,,, 7 (4.17)
where
V(Ro)
3 _p2fq_
Prmaz = RO (l ET ) ’ (4'18)
and where 7 is the mean relative speed (8kT/x M4 3)1/ %, then (4.15) reduces simply to,
aLw,ﬁAXTB == wp;,,FPA(Ro), (4.19)
where P4 is the (E,, p)-averaged of the microscopic probability (3.28) given exactly by,
1 fR V(R)
A — 2y .
PA(Ro) = > /(: 4rR [1 o7 ]dR/A(R) (4.20)

when Rj and A, are assumed independent of E,. The probability (4.16) and its E,-average (4.20) hold for any
curved trajectory under V(R). Expressions (4.16) and (4.20) are new analytical results for the probabilities
under general V(R).

4.2 Ion-Ion Recombination Under Coulombic Attraction:

For hyperbolic motion under Coulombic attraction V;(R) = —e?/R, the E,-microscopic probability
(4.16) reduces to,

4R (E,)( 3VC(R0))/< VC(RO))
9 A . 220 - - -

PA(E,, Ro) = XA 1 5 E 1 E (4.21)

where both Ry and A, may be functions of E,. The macroscopic probability (4.20) is,

4R 3 V.(Ro) Ve(Ro)
A _ __0 vt 0 _
PA(Ro) = [1 T ]/[1 7 (4.22)
for constant Ro and A. The rate (4.14) or (4.19) is exactly,
_ 4 7] 3V(R

Otou{Re) = s PA(R) = 31783 [1- § 20 (423)

for Coulomb attraction. This is appropriate for termolecular ion-ion recombination,

A*+B +M—AB+ M (4.24)

in a low density gas M. For straight-line trajectories, Thomson obtained the rate,
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ar = TR3TP#(Ry) (4.25)
where the Thomson (straight-line) probability is

4 Ry
Pf=-_=
T3

The corresponding probability (4.22) and cross section (7pZ,,,) for the correct hyperbolic trajectory

are greater than the corresponding straight-line Thomson probability P# and cross section mRZ by the
enhancement factors,

(4.26)

3R R
_ pAIpA _ J e e
Fp=P /PT = <1+ 2—R0>/<1+-—R0), (4.27a)
and
2 2 Re
F.= pmaz/RO = (1 + )a (4276)
Ry

respectively, where R, = ¢?/kT is the natural unit of length. The probability factor F, remains bounded,
increasing from 1 for large Ry >> R, to 1.5 in the limit of small Ry < R,. The focusing factor F. is unlimited
increasing from 1 to R, /R, over the same range of Ry. The two factors however combine to give the amplified
ratio,

_ 3 Re 1| RO >> RC
ay/ar = (1 + 23_0) - {1.5(R,/Ro) Ro < R. (4.28)

For typical R ~ R, /2 characteristic* of ion-ion recombination this trajectory-correction for a is quite large
(~ 4).

Consideration of the inner integral of (4.7) in isolation presumedly hindered previous efforts to obtain
the correct generalization of Thomson’s straight-line result (4.26) to actual hyperbolic trajectories. It can be
seen however that the cross section focusing factor F; to the cross section is the main correction. Natanson's
result!s,

an = 7p2,.. TP (Ro) (4.29)

which accounts for F. but retains the Thomson straight-line association probability (4.26) therefore remains
quite accurate by being lower than the correct rate (4.23) by the Fp-correction of between 1 and 1.5 .

4.3 Electron-Ion Recombination

For termolecular recombination electron-ion recombination,

e +A"+B— A+B, (4.30)

the kinetic energy of the electron of mass m changes by an amount (T, —~ Ty) = (2m/M)T, after an elastic
(low-energy, isotropic) collision with the gas atom B of mass M. The change in internal energy E, of the
(e- — At) pairis E, - By =T, — Ty = (2m/M)[E, — V(R)). Hence the pair is bound (E; < 0) provided'®,

2 2
= Ep (4.31)

where Ey, rather than oo, is now the upper limit to E, in (4.13).
On rearranging the order of integrations to reflect this R-dependent limit to E,, the rate (4.13) for

constant A, is then,
kT 1471 Ro R/R (R
¢ = |—] = 47R*dR = )ee™ 4.3
aj [WMAB] '\/o ] /(; <l~:— Re)ee de (4.32)
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which, with the aid of e"(®R¢/R) ~ 1 — §R, /R for small § = (2m/M), yields,

. m RoR? [ 8kT 1*/°
wMasp

(4.33)

where R, = ¢?/kT. When R, = %Re the Thomson radius, this classical rate aj agrees exactly with
Pitaevskii’s rate!” derived from a Fokker- Planck analysis of diffusion in energy space. A previous classical
treatment'® of (4.30) established the important result that o varies linearly with Ro (as above) rather
than R3 as in (4.23) for ion-ion recombination (4.24). The formulation!® adopted however a less rigorous
weighting procedure which differed from (4.13) by a factor of 2/3 (in the inner integral) and which therefore
resulted in a rate %ap rather than ap as found here.

The main difficulty in applying (4.23) and (4.33) to the collisional recombination processes (4.24) and
(4.30) is that the trapping radius Ro is uncertain. The rates increase without limit as R§ and Ry for each case,
respectively. The radius may be assigned de-facto by comparison with results* of more elaborate theories
based on accurate numerical solution of the full Collisional Input-Output Master Equation. It would however
be advantageous if a classical treatment were formulated where R, appears as a variational parameter. Such
a treatment is now developed in the following section.

4.4 Classical Variational Treatment

Let the bound level V(Ro) separate the reaction gone from the product zone. The one-way rate across
this transition state from (2.1) with E = V(Rp) is,

+

o oo Rip; R}
ay(Ro)NaNp :/ dE,/ de/ n,(R)v{(R)dR (4.34)
V(Ro) 0 RT

where the frequency of collisional transitions across the boundary is

V(Ro)

L},
V,I(R, Rg) :/ dEf/(; V,f(R)dL; (4.35)

V(R)

and where R is the apocenter for bounded motion (0 > E, > V(R)) and is Ro for dissociated pairs.
The contribution a¢ to (4.34) from the continuum states is given by (4.13) with v, replaced by »] and is
supplemented by the additional contribution ap from the bound states between 0 and V(Rp) to give,

ay = ac +ap (4.36)

where,

0 R
o dR
apg = dE./ 4R, (R, v,)v, —— 4.37
2= [ [, MmO ] s (447

which with the aid of (4.12) for bound states reduces to

€0 Ro 7
ap(e) = T/ €eple) de/ 41r1i’2<I VIR l)g-,}E (4.38)
0 0 | E: | A

where p(¢) = n,/n,, €0 = ~V(Ro)/kT and A(eo) = 1/ /v, is in principle a function of €o. At low gas densities
p is independent of R due to R-equilibrium.
For Coulomb attraction and constant A, then the contribution to (4.34) from the continuum states is,

4 T 3
Qc(Ro) = gﬂ'Rg;\—' (] -+ Eéo) €= R./Ro (4.39)

as before in (4.23). When p(¢) = 1 and the contribution from bound levels is,
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ap(Ro) = —1rR o ([1+ 150] [l-}-%eo]) (4.40)

The summed rate (4.36) is therefore

V(R
ay(Rp) = —1rR0 ¥ [ ——%([i,o—)] exp (—V(Ro)/kT) (4.41)
as a function of Ry, or is
v (1 1\ o
av(fo) RE Y ('— + E) € (4.42)

when expressed as a function of the binding energy €, = e?/(RokT) of the tranmsition level. Since upward
transitions past this level V(Ry) are neglected by (4.41) and since n, is set equal to %; which is an upper
limit for the distributior of bound levels in the range 0 > E, > V(Ry), the rate (4.41) is therefore an upper
limit. On assuming that the variation of A'(eo) in (4.42) with ¢ is much slower than the remaining eo-
dependence, (4.42) displays a minimum at ¢j = /6 which corresponds to Ry = 0.408R,. This level ¢o then
acts as a bottleneck to the recombination as in the bottleneck method of Byron et al. This value compares
very favorably with exact assignment of Ro (cf. Fig. 2 of reference 4).

The bound levels between V{Rp) ~ 2.45kT and the dissociated limit are in general not in energy
equilibrium as assumed in (4.40) and also in the original bottleneck method'®. On setting a trial (variational)
non-equilibrium distribution,

ple) = (] + Ei) exp(—¢/eo) (4.43)
0
which is physically realistic*, in (4.38) then (4.34) yields,
4 s T 1 (Teo — 3€3) — (2€3 — €0 — 5) exp (€0 — 1)
ay = ZrRiy; [ * 53 1. Pl = TP (4.44)

which displays a minimum at €5 = 2.55 which corresponds to Ry = 0.392R,. The choice of Ry is therefore
rather insensitive to p(e). The ratios of (4.42) and (4.44) to 2rR3(%/)') are however 1.75 and 1.56,
respectively.

Since A] = v,/v] is in general different from the mean path A, for production of bound from dissociated
pairs, and is in general unknown, the present strategy is to assign the unknown radius Ro in §4.2 and §4.3
as the above variationally determined R;. Hence (4.23) yields,

ap(R) = 0.3178= an:\ (4.45)

This result is only within a factor of 2 higher than previous numerical results* of the exact treatment
in which the quasi-steady state solutions (ns of a collisional input-output integral equation for bound-pairs
Ey is used in equation (2.11) of §2) over a wide range (0.1 < a < 1) of mass parameters,

a=M,/(2M, + M,) (4.46)

for recombination of ions of equal mass M, in a gas of mass M.
It is also interesting to note that agreement of (4.45) with the Thomson straight-line rate-equation {4.25)
with Ro = %R, but with 7 set equal to the customary RMS value of 1.0854 7,

4 T
ar = 0.3216§1rR§*‘X (4.47)

must be regarded as fortuitous in that the Coulomb focusing factor of 4.676 (neglected in (4.45)) offsets
the considerable reduction (RO/RT)3 ~ 0.23 of the reaction volume. It is also interesting to note that the
variational value R = 0.408R, agrees closely with the value Ry = 0.417R, in Natanson’s rate,
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ay = foﬁ[l - g,” )]PT (RN) (4.48)

which differs from (4.19) only in the use in P# of Thomson’s straight- line probability (4.26) rather than
the exact probability (4.22) associated with hyperbolic orbits.

5. Angular-Momentum Integration: L?-Equilibrium, (R, E)-Nonequilibrium

5.1 Master Equations

Integration of the basic set (2.11) of Master Equations for n (R, E,, L?) over the full range 0 < L? <
R*p? = 2mR?*[E, - V(R)) = L2, (R) of L? accessible for given R and E, is facilitated by Leibnitz’s rule
which provides,

2

L1 9 N , 18 Lo, N
2735 (B (B) e [|4L) = & [B*#i(R) | v {] 4L
o RZOR R?8R | J,

-2 (R, E,, ,,,,)[‘9‘.‘2 ] .(5'1)

for differentiation with respect to R of an integral with R-dependent limits. The distribution nf‘ (R,E,, L))
in (5.1) is evaluated for that maximum angular momentum L2 .(R) = R?p?(R) associated with the (E,, L2,)-
orbit which just reaches R at either turning point R Since contracting pairs n, are transformed into
expanding pairs n at the pericenter and expanding n pairs are transformed into contracting pairs at the
apocenter, the R-space must be divided into two Reglons 1 and II which exclusively contain the pericenters
R and the apocenters R, respectively for a given E, and all accessible L,. In Region I sources of
n;L (R;) originate from = (R;"), while in Region II sources of n] (R;}) originate from n (R;"). The effective
interaction (2.2) associated with L2, is,

Vi (R) = V(R) + —— (5.2)
Region I which contains the pericenters of all L?-orbits with a given E, has range R; < R < R; and Region
I1 which contains the apocenters is R, < R < R;‘b where the boundary radius R} is the radius of the circular
orbit given by the minimum of V,,,, ie. hy the zero of

AV, _dV  2(E, -V) _ 1 dLZ, (5.3)
dR ~ dR R T 2M- ABR? dR '

and R;‘% are the turning points associated with the most penetrating L, = 0 orbit. Thus R, = €°/2 | E, |
for a bound orbit under Coulombic attraction. Region II does not exist for dissociated pairs. The boundary
conditions (2.12) and (2.13) can therefore be incorporated into (5.1) by setting the distribution evaluated at
the turning points to be,

ni(R,E, I2,) = n (R, E,, R*p?); Region I (dV,,,/dR < 0)
e Th ~ | n}(R, E,, R*?) Region II (dV,,,/dR > 0)

since " is the precursor (source) of n in the pericenter Region I and n; is the precursor of n in the
apocenter Region II when it exists. “ntegration of (2.10) with the aid of (5.1) and (5.4) therefore yields,

(5.4)

2

1 8 \ . oLZ.,
[szi} = [n, lvg | ——] -

s 2| / " /O o ar? / s [e2(R) - o5 (B)] C5(R) (59)

V(R)

where C,4(R) = fi,1,4(R) is the one-way equilibrium collisional rate and where,
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2.2

FE(R) = (R E) = / " m(R, Ei, I?) | vg | dL2 (5.6)
4]

is the current per unit dR dF, across the R-sphere.
Addition of the two equations in (5.5) eliminates n; and shows that the E,-microscopic net current

Ji(R) = J(R,E,) = [5](R) - 57 (R)] (5.7)
across R satisfies the microscopic continuity equation,
L2 (RiR) = / " 4 / r f 2 (R) - p; (R)] Cus (R) (5.8)
R?8R ' ~ v 7o TJo L & v '

in general. The net effect on the net current (5.7) of the conversions at the turning points are null. For
(E:, L?)-equilibrium, p,(R) = ps(R) = p(R) and (5.8) then implies constant flux 4wR2J,(R) across the
R-sphere.

L2-Equilibrium: For equilibrium in L?, then

2 _ [ %(R, By, L2)
n(R, E,, L) = [—_———i.(R, E) n(R, E,) (5.9)
which is (Appendix A),
. no (1 )
(R, E,, L) = (2R2p,p3 (R, E,) (5.10)

where p, and pg are the relative and radial momenta, and where the L?-integrated distribution is

2
L"n

ni(R, E,) =/ (R, E,, L*)dL? (5.11)
0

The normalized distribution p,(R, E,, L?) of (2.7) is then independent of L?. The current (5.6) is then,

) 1
3 (R, B) = 50 (R, B)on = (Li o (R, By, L7,) [ o | (5.12)

Under L2-equilibrium (5.5) therefore reduces to the set,

419 [B%E(R,E)] = %

1 [eLZ,
R?9R

- ® I x * %
| L E, — pE(R)| CE(R)dE;, R< Ry (5.13
L'zn‘ aR ]E‘Jz (R E)+</V(R) [pf (R) pt ( )] 1f( ) ! ‘R_. b ( )
for R in Region I (where dL2, /OR > 0), and to,

aLZ -]

mi

oR

16 ,.,.
trr5g (RIC(RE)] =

L
Lo

j.*(R,E-)+/

|5 (R) - pE(R)] CE(RMEy, R2 Ry (5.14)
V(R)

El

for R in Region II (where 8L%,/8R < 0). The one-way equilibrium rate (per unit dE,dE;) for E, — E;
collisional transitions is,

cim = [

R%p? R*p}
dI? / atv,;(E,, L By, L%; R)AL? = #2(R, B\)v4(E,, Ef, R) (5.15)
0 0

Note that dLZ (R) at constant E, in (5.13) is simply the increase (if positive) or decrease (if negative) in the
number of orbits (states) L2, with their turning points within the range between R and R + dR. In Region
I which contains the pericenters, this number increases as R is increased and in Region II which contains
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the apocenters this number decreases as R increases. Thus dL2,/L?, in (5.13) and (5.14) is the fractional
increase (or decrease) in the current j*(R, E,) across the R-sphere as R is increased to R + dR. Equation
(5.13) therefore incorporates directly the boundary conditions (2.12) and (2.13) by including the appropriate
source/sink terms. Contracting (—) pairs which disappear as (—) pairs reappear as sources of expanding
(+) pairs in the pericenter region. Equation (5.14) acknowledges that (+) pairs are sources of (—) pairs in
apocenter Region II. For Coulombic attraction, Region I comprises all R for E, > 0 and 0 < R < R} for
E, < 0 while Region Il comprises the range R, < R < 2R, for E, < 0. The boundary radius R = /2| E, |
is the radius of the circular orbit of energy E,.
The net radial microscopic current,

J(R) = J(R,E)= %( F e = —n E(oF = o7 ). = [oF (R) - o] (R)] 5 (5.16)
satisfies the equation
198 [R?J (R)] = /m [pr(R) = p.(R)] Ciy(R)E (5.17)
RZOR s E. - v(R) f ' tf £ .

since p, = (pf + p])/2 and Cyy = 2CZ +(R). The net effect of the geometrical (+) — (=) conversions in
(5.13) and (5.14) to the net current J, is obvxously null, in accord with (5.17).
The rate (2.1) can then be written in terms of the association probability

nt(R,E) _ (B

PAE, Ry)=1- -+ =1- % 5.18
o)== mE) T ®) (1)
in the transport representation as,
YR, . ® 2 ~rpy U] - A
afiaNp = lim [ dE,[4nRPn; (R)%:] o7 (R)PA(R) (5.19)

R— 0o 0 2
where i labels E,-state quantities. In terms of the probability,

Pi(R)y=1-L2 o g p1(R) (5.20)

Ly p:(R)
for subsequent collisional stabilization of E;-pairs originally produced collisionally from a dissociated E\-pair,
the collisional representation of the rate is,

0

Ry
oFi4Fp = Jim / dE, / dR [ (R (R)PS(R)E, (5.21)
v(r)

In terms of the one-way equilibrium flux

27 _ 2 (~% b 272 | exp(=E/kT)
47RJE (R, B.) = 4nR* (7% (R, E.) 2) = 4nR?L2, [—-—————(% TR (5.22)
per unit interval dE, across the R-sphere, then the source-sink terms of (5.13) and (5.14) are,
1 [eL?, 1 jE(R,E) 0 [ o=
2 [9%m E)=——Z\Unt) ¢ (p E, 5.
|5 ]Ela, (R B) = - g2 2o (BT (R 2) (5.23)

The set (5.13) and (5.14) then reduce to the following equations in Region I and Region II, respectively.

:tj;—z a‘; (R%FEeE(R)) F o7 (R)%% (R52) = /V o;) [o% (R) - o (R)] €35 (R)Ey, (5.24)
:'}%a% (R5EpE(R)) 7 4 (R) 2 1;20% (#%52) = /V TR) [ (®) - s (B) CH(R)E;.  (5.29)
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When (-) and (+) pairs are simultaneously in E,-equilibrium then p,*(R) = p}t(R) = p¥(R), and the
collisional RHS of (5.24) and (5.25) vanishes. The LHS then predicts constant flux 47R%7=[p*(R) — p~(R)]
for the exterior R > Ro region. The above set (5.24) and (5.25) for L?-equilibrium is identical with that
deduced previously!® from conserva.tlon considerations.

Classical solutions are now developed in §6 under L?-equilibrium in the interior (R < Rp) region.
Dissociated pairs belong only to pericenter Region If and classical (full absorption) solutions to (5.24) will
be provided in §6. Bound pairs with energy E < Ey = V(R) +(1/2)RdV/dR and R > R,, the zero of (5.3),
are in Region II governed by (5.25), which is also solved in §6.2 in the absorption Limit.

6. L?-Equilibrium: Analytical Expressions for Classical Association Rates and
Probabilities for a General Interaction V(R)

Assume as in §3.1 that Pf,, the probability (5.20) for stabilization of the bound state { collisionally
produced from dissociated state i is unity for R < Ry and is zero for R > Ro. The rate (5.21) in the
collisional representation is then,

—_ o~ {+ +} Ro
aNoRp = / dF, / n(R)(R)dR (6.1)
0 [¢]

where,

0
w(R) = / v, (R)E, (6.2)
V(R)

is the frequency for collisional production of bound levels.

6.1 Pericenter Region I (EF > E, = V(R) + ;%'R < Ry for E > 0 and all R): Microscopic
Distribution of Dissociated and Bound Pairs.

The absorption form of (5.24) is then,

8p1 B 21/.(R) iy _ 2 o
where for small R,
0 -]
W(R) = / vy (R)AE; ~ / v, (R)AE; (6.4)
V(R) V(R)
is close to the total collision frequency to all levels. On integrating (6.3) between R and Ry, the solution is,
- - R dR
LR =7 (Rojexp (-2 [ 5T ) = 47 (Ro)P5 (R ) (6.5)

which in effect defines Pg (Ro, R), the probability of survival against collision of (~) pairs from Ry to R. By
comparison with (3.5}, the main consequence of L2-equilibrium on the distribution is to simply replace the
radial speed vg by its L?-average of }u..

The outgoing distribution p:' satisfies (5.24) which reduces in the collisional absorption limit to,

[Rzp R > (R7) [R’ *1 ol (R (6.6a)
which is,
‘9 2,2 )+ 2R/ 3 2 2y - 2R/,
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The above equations (6.3) and (6.6) also follow directly from L;-integration of the corresponding (E,, L?)-

equations (3.3) over all L?, use of Leibnits’s integration rule and setting p¥ (R, E. R%p?) = p (R, E.) so as

to acknowledge conversion at pericenter R, . The solution of (6.6b) can be written as,
. 5
o) = [ o (ROr (RVPE (BT, S)ES (67)

for S in the range 0 < S < Rp of Region 1. The physics of this result is that the source of outgoing pairs
are the incoming pairs which undergo conversion at each pericenter R between R = 0 and S. The outgoing
pairs formed at R; then survive to S with probability

PI(R;,S) =exp (-2 / ’ @) . (6.8)

R M

The fractional weight of incoming pairs with pericenters R, within the interval dR; about R; is,

o dI? A (R
W, (Ra )dRi = Iz - = S’pﬁ-

(6.9)

under L?-equilibrium. Pairs with angular momentum L,,,; = Sp, have a relative orbit which just touches
the S-sphere at S which in turn encloses all the pericenters R between 0 and S.
The probability of association,

T (E,, Ro)
PA(E,, Ro) = 1 PL{EuRo) 6.10
(B4, Ro) o (., Ro) (6.10)
within Ry, with (6.5) and (6.7), yields
1 R _
PA(E, Rp) =1- 327 | P5(Ro, R )w! (R7)P (R, Ro)dR; . (6.11)
oPo Jo

The physics of this result is that the incoming (—) pairs which arrive at the pericenter with probability
Pg (Ro, R]) and weight w;” (R;) per unit dR;" are converted at each R, to outgoing (+) pairs which survive
to Rg with a probability P; (R, Ro) With the above definitions of P; and w,, integration by parts then
yields,

PA(E. Ro) = % '[0 " (1 - ‘—’%ﬁ) exp [—%(Ro - R)] dR/M, (6.12)

where the maximum impact parameter po which has its pericenter on Ry is given by p§ = R[1 ~ V(Ro)/E\]
and where A, may depend on E,. In the limit of low gas densities Ro/A, — 0 and (6.12) reproduces the
previous low-density limit (4.16).

For energy independent JA,, the macroscopic probability (3.28) with (6.12) yields,

O V(R)] _sro-ry/r [dR
PA(Ro) = . /0 4nR? [1 - —%(Tl]e Ro-R)/A lT] (6.13)
Expressions (6.12) and (6.13) pertain to general interactions V(R) and are valid when the (E,, L?) pairs with
R < Ry are in L? equilibrium and in (E,, L?)-equilibrium, respectively. The corresponding distributions
(6.5) and (8.7) at Ry associated with P are not in R-equilibrium.

On recalling the original complexity entailed with the multidimensional integrations (3.23) and (3.24)
involving the microscopic distributions (3.5) and (3.6) and the probabilities (3.25), both expressions (6.12)
and (6.13) represent a significant algebraic reduction applicable to general V(R).

6.2 Apocenter Region Il (E < E, = V(R)+ %%; R > Rp): Microscopic Distribution of Bound
Pairs.
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Equation (5.25) reduces in the absorption limit to,

6p;+ 2
T =-2ot (6.14)
for pf and to
3 -
57 E70T (B)exp(=2R/)) = -2 (859" | (R)exp (~2R/ (6.15)
for p;”. The solution of (6.15) subject to pre-assigned p, (Ro) is,
o
- p - -
47 (5) = G2 (Ro)P5 (RouS)+ [ 6 (B (RYVPE (R, S)ARY (6.16)

for S in the range Ry < S < Ro. The first term cn the RHS is the direct contribution from incoming Ro-pairs
which survive against collision to S with probability,

S
P35 (Ro, S) = exp (-—-2/}; d_s}.Z.> (6.17)

and R2p3/S?p? is the fractional number of L*-states accessible under L?-equilibrium. The second term is the
contribution from apocenter (+) — (=) conversions at R} which survive against collision back to S < R}
with probability Pg. The fractional weight of apocenter pairs within interval dR} is

d (11'5.+ ’p“)
The solution of (6.14) subject to p (R}) at the boundary between Regions I and II is,
pi(RY) = pf (Ry)PF(Ry, R}),  Regionll (6.19)

where (6.8) provndes the probability for survival of outgoing pairs to R in the range R, < R} < Ry. The
distribution p} at Rj is obtained from the pericenter Region I solution (6 7) which gives,

R
o+ (Rs) = o7 (Rs) / P; (Ry, B] T (RD)P (R, Ry)dRY, (6.20)

which is by now self explanatory. On using (6.16) for p; (R3) then in terms of the assigned p” (Ro),

Ripd _ Ro -
oH(RY) = { Rg”gp, (Ro)P; (Ro, Ry) + /R ol (R )" (RY)PS (RY, Ra)dRY }
b
Ry
y { PS5 (R, R )w] (RY)PE(R], Re)dR; § P¥(Ry, R), Regronll (6.21)
(o]

The notation adopted here facilitates the recognition of the various sequences involved in the generation
of p} from p; in Region II It also illustrates quite dramatically that p} is the solution of an integral
equation in R-space. The use of the absorption limit adopted in this section $6 essentially eliminates the
integral equation in E-space involved with the original Master set of equations (5.24) and {5.25). The full
solution of the Master equations involves integral equations in E and R space, which are difficult to solve
numerically.

The distribution p; (R) in Region I which originates from p; (Ro) in Region 11 is,

p, (R) = p; (Ry)P; (Rs, R);  Regionl (6.22)
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6.3 Application: Coulomb Association Probabilities for Pericenter Region L.

Dissociated pairs with all R are all in Region I. For Coulombic attraction V(R) = —e?/R, and constant
free-path-length A, (6.12) yields,

PA(Ro,E)=1— 81? [(1 ~ ¢74X) (}2- [5(" - x? - 1) + 4X] (6.23)

where the parameters

X = Ro/X; X(€) = pol€)/Ro (6.24)
are related by
X?(Ro,e,X) = [1 + i] x? (6.25)
Roe

in terms of the natural units R, = ¢*/kT and € = E/kT of length and energy.
The low-energy parabolic (E — 0) limit to (6.12) yields

A 1 '—i
PH{Ro,E—0) = 1- 1= (1-¢7) = {i}“/'\’ 3"(_‘20 (6.26)

and the high-energy rectilinear (E — oo) limit is,

1 _ LR/, X —0
A 4X 3"0 ] .
P4(Ro,E—~o00) =1= g5z [4X ~1~e ]-'{1' g (6.27)

The initial gradients of P4 are proportional to the enclosed parabolic and chord segments 2Ro and %Ro,
respectively. The above limits (6.26) and (6.27) are the envelopes to the family of plots of (6.23) versus gas
denisty for various energies €. The E-integrated probability (6.13) is,

PA(Ro) = PA(Ro, kT) (6.28)

and is identical with the probability {6.23) evaluated at € = 1. The above probabilities derived under the
assumption of L%-equilibrium will not in general agree with the corresponding results (3.27), (3.31) and
(3.34) based on non-equilibrium distributions (3.5) and {3.6), except in the low density (X — 0) limit when
the gradients of all the envelopes are equal to 2X and $X, respectively. Figure 4 provides the X-variation
of the E-averaged envelopes (6.26) and (6.27), and probabilities (6.23) for various €. The probabilities are in
general lower than the corresponding probabilities of fig. (1a) associated with L?-nonequilibrium since not
all collisions result in absorption (cf. fig. 5).

All collisions with (E,, L?)-pairs are not expected to result in stabilized recombination, eg. those
involving only angular-momentum redistributions in (E,, L? — E,, L?) transitions can be excluded. These
collisions which involve only angular momentum changes are expected to promote equilibrium in L? rather
than absorption. In this sense therefore the classical (absorption) solutions (6.12) and (6.13) associated with
L?-equilibrium represent a more natural outcome than those (3.5) and (3.6) associated with full absorption
of all L? levels upon collision. The probabilities (6.12) or (6.23) and (6.13) or (6.28) are therefore expected
to provide a representation more physically correct than (3.27) and (3.31) ie. the lower curve of fig. 5 is to
be preferred.

7. Solution as a Function of Gas Density: Reaction and Transport Rates
The rate (2.14) is exactly,

- - © Rip;
aN4Np = lim dE, / dL?[ax R3] (Ro)vr]p; (Ro) P (Ro) (7.1)
[¢] [¢]

Ro—-oo
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where the microscopic distributions p,i implicit in P4 (= 1- p;" /o7 ) are solutions of the transport-collisional
Master Equations (2.20) for general non-equilibrium in (L2, E;, R) coordinates, or of (5.24) and (5.25) for
non-equilibrium only in E, and R. This procedure provides in principle the fll variation of a with gas density
N.

The pairs with large R are generally in (E;, L?) equilibrium but not in R eq.il:brium. Further insight
and development may however be achieved by address to the macroscopic continuity equation. The net
microscopic current J(R, E,L?) and the net L2-integrated current J(R, E,) satisfy microscopic equations
of continuity (2.15b) and (5.8), respectively. On integrating (5.8) which holds quite generally for non-
equilibrium in R, E, and L?, over all E, accessible at a given R and use of Leibnitz’s rule,

* 18 _ 1398 2/°° 18V, ~
/V(R) 3R [R*J(R, B,)] 5 dE, = 73R {R o~ J(R, E,)dE,} + B3R [R2J(R,, E, = V(R))]

=0 (7.2)
is zero due to the null effect of all the collisional redistribution terms,
[ [ dBylos(R) - (R Cy(R) =0, (13)
V(R) V(R)

Since the net current J(R,, E, = V(R)) = j(n) - n])r, vanishes at the outermost turning point R,
given by E, = V(R), (7.2) provides the macroscopic continuity equation,

v. J(R) =0 (7.4)

which is always valid for the net macroscopic radial current

J(R) = J.(R)EE, = dE; [»*(R,E,) - n~ (R, E,)] =, 7.5)
1

V(R) V(R) 2
) Lfm

= / dE, / dL? [n*(R, E\.L}) - n~ (R, E,, L?)] vg, (7.6)
V(R) 0
© L?’ll

= [ B [ a6 (R) - 7 (R)] (¥ o). (7.7)
V(R) 0

Assumption: For large R > Ry, the pairs are in (E,, L?)-equilibrium ie. p*(R) = p*(R) irrespective of i.
Hence (7.7) yields,

\ . - 1~ = - -
1(R) =% (R) - 37(R) = gNaNp exp(-V(R)/KT)7 [p*(R) - p"(R)], R2 Ro (7.8)
when the bound levels in the range [0 — V(R)] are included in the integration, or
1=~ ~ V(R)] _( -
J =-NsN - —=|7|pT - .
2(R) = $Fafis [1- S0 wlov(2) - o~ (R) (19)
when they are excluded. For V « kT, then J; — J,. Under steady-state conditions
2 . 5 o 2 V(Ro)\ _ 4 -
47R J(R 2 Ro)/]\AAB = ap(R i 00) = WRO 1~ kT TP (Ro)p (Ro) (7.10)

where p(R) is the non-equilibrium normalized distribution n(R)/#(R) of expanding and contracting pairs
and is relaied to p~(R) by

o(R) = [ﬁf(i)g_ﬁl(ﬁ - [1 - %PA(R)] o (R) (7.11)
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when P#(Ry) is the macroscopic probability for association within R. Since the incoming paits are generated
at infinity with a Boltzmann distribution p™ (R — o) — 1 and p(R — o0) — 1 ~ §P#(c0). The summed
distribution p(0o) is therefore not in R-equilibrium. Also p~(c0) > p*(cc) and a net inward current (7.8)
exists at infinity.

7.1 Non-Equilibrium p(R): The Transport Rate

The basic Master Equations (2.20) followed from (1.2) which was originally derived from a Boltzmann
equation in (R, p) phase space. In the absence of a sink at R, it was also shown® from the same Boltzmann
equation that (7.5) the macroscopic current J can be represented by the standard diffusion-drift expression,

J(R) = -DVn(R) - [-§VV(R)] n(R), R> Ro (7.12)

where n(R) is the non-equilibrium (A-B) pair distribution which is affected by the strength of sinks within
R < Ry. The macroscopic collisional coefficients D and K for relative diffusion and drift of A towards B
through a gas M are given respectively by D = D4 + Dp and K = K4 + Kp where D4 p and K4 p are the
diffusion coefficients and mobilities for the individual species A and B in M. These coefficients at low field
strengths (as Coulombic at large R) are related by KkT = De or by Ke = DR, where R, is the natural
unit e?/kT so that

J(R) dp a

—_— = - -V —— D ee——e .

A Dexp[-V(R)/kT) 3E - nh (7.13)
The solution of (7.13) between Rp and oo yields,
p(Ro) = p(cc) (1 — a/azr(Ro)) (7.14)
where the transport rate,
o0 ~1
arr(Ro) = 4xD [ / exp(V(R)/kT)R™*dR (7.15)
Ro

is the rate of production by diffusional-drift of Ro-pairs from pairs originally with infinite separation.
Once p(Ro) can be furnished from (7.1) in terms of «, then (7.14) can be solved for a.

7.2 The Reaction Rate

We now choose Rp in (7.1) to be finite, yet sufficiently large that no sinks exists outside Ry (eg.
Ro > 5(e*/kT) for a Coulomb interaction® at low gas densities). Both (7.4) and (7.13) are then valid. The
effect of non-reactive collisions outside Ry will now be acknowledged via appropriate choice of p; (Ro) in
(7.1). The component species A and B are assumed to be in collisional equilibrium with their mutual field
V(R) at these large R > Ro. The kinetic energy gained from V(R) by the contracting pairs as R is decreased
is lost upon collision with the gas species M. Following each collision, the kinetic energy T at each R > Rp
is therefore reduced to the original kinetic energy E, = Tw of generation of pairs with infinite R. Assuming
that the last collision suffered by the R,-pair occurs at (R, + A), where 2 is the macroscopic mean free path,
then the pre-collision kinetic enezgy of the R-pairs is,

T'(R) = T + [V(R + A) = V(R)] (7.16)

which represents an increase of 6V (R) = [V(R + A) — V(R)] over its original thermal value Ty resulting
from the previous collision. Prior to the next collision at R the internal energy is then,

E/(R)=T'(R)+ V(R) = T + V(R + \). (7.17)

At low gas densities A — oc, and E, of course remains conserved for all R > Ry while T, increases
from T. = E, at infinity to [E, — V(R)] at R. The internal energy of pairs contracting at Rg is
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E] = To— | V(Ro + A) | rather than E; = T, as it would be in the absence of diffusional-drift collisions
outside Rj.

The degradation of E, from its value at infinity therefore causes E, in (7.1) to be replaced by E.. Hence
(7.1) yields,

a = agrn{Ro) [p(Ro)/p(c0)) (7.18)
= (Fuia) " [ o mRZ%, (Ro)vr) PA(Ro) (7.19
() [ [ e sy o

This defines the rate of reaction agy(Ro) within Ry which equals o if full equilibrium, p(Ro) = 1, were
to exist. On inserting (7.18) into (7.13) then the overall rate is,

_ arn(Ro)arr(Ro)
" arn(Ro) + arr(Ro)’

This decomposition (7.20) of « into reaction and transport rates was known in recombination since
the macroscopic result of Natanson!® was recast? in that form (which also can be deduced directly from
Debye-Smoluchowski theory?!). What is new here is the following expression to be used in (7.20) for the

reaction rate,

(7.20)

arn(Ro) = (R [aRN(RO)P (Ro)] (7.21)

where the macroscopic equivalent (3.20) of the integral in (7.19) is,

ary(Ro) = mp2, .. Fexp(~V (Ro + A)/kT) P4 (Ro) (7.22)
where,
2 _pzf,_V(R)  V(Ro+])
Pmaz = RO [1 LT + _"‘_—kT . (7.23)
With the use of (7.11) in (7.21) then,
-1 pA(oo)
- Z !
arn(Ro) = (1 Z1PA( Ro)) o (Ro) (7.24)

since p~(00) — 1. Previous treatments had tacitly assumed that apy in (7.20) was given by apy the
microscopic rate (7.22). The factor in (7.24) which essentially arises from the differences between the values
p~(Ro)/p™ (o) and p(Ro)/p(c0), tends to unity in the Limits of low and high gas densities when P4 — 0
and 1, respectively.

8. Summary

Basic sets of Coupled Collisional-Transport Master Equations have therefore been developed in this
paper for the microscopic distributions n* (R, E, L?) of expanding (+) and contracting (~) pairs (A-B) in
a gas M of variable density with respect to their (A-B) internal separation R, internal (orbital) energy E
and orbital angular momentum L, as well as for the corresponding L2-averaged distributions n*(R, E).
Expressions have been introduced for the microscopic probability PA(R) for association of (E,, L?)-pairs
with separations < R and for the probability P; (4) of multicollisional stabilization of (Ey, L)-pairs with
separation R formed collisionally from (E,, L?)-pairs. The recombination rate has then been expressed in
the collisional form and the transport form which is more amenable to physical insight and to algebraic
development.

Each set has been solved exactly in closed analytical form in the (classical) limit of collisional
absorption where backward collisional couplings vy, are neglected. The corresponding probabilities P/(R)
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for association have also been determined. In particular the multidimensional integrations inherent in P/ for
orbits under general V(R), including Coulombic attraction, have been reduced to new and simple analytical
results for association (a) at low gas density, and (b) at all gas densities for pairs which are maintained in
L?-equilibfium by collision.

A classical Variational treatment for which the highly excited bound pairs need not be in E-equilibrium
has also been introduced, in order to provide assignment to the reaction radius Ro adopted in the above
classical treatments.

Expression for the rate a as a function of gas density in terms of the reaction and transport rates
apy and arg, respectively , has been proposed. It differs from previous well known formula in the form
of the macroscopic reaction rate agy. Finally, useful expressions for the microscopic path length in E, L%
Coulombic Orbit enclosed by a sphere of radius R and simple analytical expressions for the L?-averaged
enclosed length over all trajectories under a general V(R) have been derived in Appendix B.

Acknowledgments

This research is supported by the U. S. Air Force Office of Scientific Research under Grant no. AFOSR-
89-0426.

Appendix A: One-Way Equilibrium Microscopic Flux and Distributions

These distributions can be calculated directly?! from the relevant statistical formula?® or from the simple
differentiation of action integrals®*. It is convenient here to summarize the key results. M is now the reduced
mass of the (A-B) pair, and with internal separation, energy and orbital angular momentum R, E and L,
respectively. E = ekT and [? = 2M Ep?; where p is the impact parameter for dissociated A-B pairs with
energy E, with radial speed vp = dR/dt and mean speed 7 = (8kT/1rM.w)1/ 2,

1. (E, L)-Microscopic Current and Fluz:
7(R, E, L?) = #*(R, E, L?)vp

41r2

4xR*j*(R,E,L*)dEdL? = e exp(- E/kT)dEdL?

(27
=Tee " de d(1rp)

2. E-Microscopic Current and Flux:

- Ry’
(R, E) = / (R, E, L?)dL? = Evn £(R, E)
0

~ 1 %
47R*j*(R,E)dE =vce™* denR? (1 - _‘;;))

= np?(R)Vee™¢ de

3. Macroscopic Current and Fluz:
The current is

[«
75(R) =/ 7* (R, E)dE = L e-V(RIAT
V(R) 4

for all bound and dissociated pairs, and is

for dissociated pairs. Respective fluxes are,
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47R%% (R) = nR*Texp(—V(R)/kT)
- - V(R
41I’R2]3: (R) = wp,’,mxv; pfnaz = R? [1 - 'T(in_)'

4. (E, L)-Microscopic Distribution:

(47 /vgR)

2~% 2 2 _
4RI (R, B, L)RIEL? = ooy e

exp(—E/kT)dRdEdL?

5. E-Microscopic Distribution:

la
47R*7* (R, E)dRdE = %’gee" de(] - —‘-%Q)dR

E-V
V—exp( —€) T de

= (4rR*dR) [G% (e, R) de]

= 4rR*R

where ij, p 15 the one-way Maxwell-Boltzmann velocity distribution in above [ ].
6. Macroscopic Distribution:

7% (R) = / T FE (R, E)E = : exp(~V(R)/RT)
V(R) 2

for available bound and dissociated pairs and,
o0
7 (R) = ] 7*(R, E)dE
0
= 5 exp(=V(R)/AT) {1 - [@(\/)q - —;—;X”zexp(—V/kT)] }

for dissociated pairs, where the error or probability integral is,

N Y A - 2X)F
@(¢3)=%A 7Y e tdt = Xl/2 XZ 2(k+)1

in terms of X = V(R)/kT.

Appendix B: Microscopic Path Length L£(E, p; Ro) of (E, p)-Coulombic Orbit Enclosed by
Sphere of Radius Ry and p-averaged Path Length for General V(R) .

The enclosed length may be determined either from

Ro Ro do\?
L= ds, = 2
s 2/ l+R(dR)

R. RI
which implies knowledge of the relevant orbit 6(R), or from
Ro Ry /E -V
L(E,L; Ro) = 2/ 2dR=2 VE - V(RR
R, UR R, VE-V(R)~L*/2MR?

where the pericenter R, is the root of the denominasor. For a hyperbolic orbit under Coulomb attraction
V(R) = —€*/R, (B.2) reduces to,

B /[R+a)?=a? Rota /713
w/a.(t-l) V(R + a)? - a?¢? e V72— ale? (B3)
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where the eccentricity ¢ and semi-major axis a are given by,

L2
2 2, 2 2
= —_—=1 ; =e°/2E. B4
€ 1+(2mEa2) + p%/a%; a=¢ef (B4)
The maximum impact parameter for the enclosed family of trajectories is given by,
\% Ro
A(E) = Ré(l - —KE—)) (B5)

Integral (B3), with a singularity at the lower limit, may be evaluated numerically by standard integration
techniques or from the analytical expression,

L(E,L; Ry) = ﬂ%:_})_p(qg, k) — acE(¢, k) + (Ro + a)sin(9) (B6)

in terms of the incomplete elliptic integrals F and E of the first and second kinds respectively, with angle ¢
and modulus k given by,

(Ro+a)? —a’¢® _(Ro+a)’ - (R +4a)® _

s 2 _ 2,2
sin®¢ = (Ro+a)?-a> =~  (Ro+a)?-a? =1-¢/r (B7)
and
. 1 a
k=mna=;=(p2+¢12—)1-/-’ (B8)

respectively, The deflection angle ¥ is (7 — 2a). On eliminating ¢ via (B4) then (B6) is,
L(E,p; Ro) = 2(0* + a*)!*[k"* F (¢, k) — E(¢,k)} + 2(p} + a®)"/*sin ¢ (B9)
where,
K% =1-k = p*/(p* +d?). (B10)
Since the pericenter R, = a(e — 1) satisfies
(R, +4a)’ = p* +d? (B11)

from (B4), then (B9) is alternatively recast in terms of energy E and R, regarded as new independent
variables, as

L(E, R.; Ro) = 2(R, + a)[k"*F(¢, k) — E(¢,k)) + 2(Ro + @) sin ¢ (B12)
where
12 = {(Ri + a)2 - az]
(R, + a)2

For the limiting case of parabolic motion ¢ — 1(k — 1,k' — 0), E — 0 (a — oo) direct use of the orbit,

(B13)

R(0) = 2R, /(1 +cos8),  R,(L)=L*/me? (B14)
in (B1) or on setting E = 0 in (B2) yields,

Ro
L(E — 0, R;; Ro) = 2/ [R/(R - RV dR, (B15a)

1
=2R,Intan % (% -+ 6p) + 2Rysin 590, (B15b)
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where 6y = 6(Ro). This is also the correspondmg limit of (B12) where E(¢, k) must be expanded to first
order in k%, where F(¢,1) =Intan 2 (x +65) and where,

sin® ¢ — sin® ¢o = 1 - K./ R, ' (B16)
such that 6o = 2¢o. For computational purposes the probability (3.11) with (B9) for £ is recast in the
dimensionless units,
ER
- . ! - o Ite = . = A; - 2
p =plpo; € T Ry erg; X = Ry/ R, = e*/kT (B17)

as,

PAX A= [ 1= exp(-£0K, 5N (B15)

with,

o 1/2 12
EXG) _ox (14 1) 7 | L P4, B) - (0 + )B4, K) + (14 0% 2 sin g, (B19)
f'

A /plz +a’?

where,

2= (4 +1))7";  sinfe=1-p7 K =a?(p? +ad?)L (B20)
The variation of this probability (B18) with the density parameter X (~ gas density) and reduced energy
parameter €' or 7o is displayed in Fig. 1. Expression (B19) is univerisal in that it simultaneously provides
variation with gas density X and Ry (see Fig. 2).

Averaged Enclosed Length £(E; Ry) Over All Accessible Trajectories.

At low gas densities the p-averaged collision probability (3.27) for constant A is (L),/A where the average
enclosed length of all possible trajectory segments,

L(E; Ro) = (L(E, p; Ro))p = = / $ C(E, p; Ro)dg? (B21)

enters into expression (4.7) for the low-density rate of ion-ion recombination. Direct use of (B9) in (B21)
appears cumbersome, except for the limiting case (£ — 0,a — o0, ¢ — 1) of parabolic motion. Then use of
the parabolic segment (B15b) in (B21) with,

dp’ 2(R, + a)dR, dR,
- _ iR B22
P(E) ~ (Ro+a)? —a Ro (522)

in this parabolic limit. The pi-averaged value (B21) after elementary integration of each term of (B15b)
yields

4
L(E — 0; Ry) = (% + 5) Ro = 2Ry (B23a)
which also follows from (B15a) by noting that,

Ry Ro Ry
L(E = 0, Ro) = RO/ | \Vixm R dR——— dR/ ,/ d&_ZRo (B23b)
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At high energies E > V(R), po — Ro and the p*-average (B21) of £ = (R — p3)*/? is £ Ro. The enclosed
length (B21) (and hence (3.27)) will therefore decrease from 2R to 3Ry as E increases for all gas densities
(cf. gradient slopes of inset figure 1a).

For the case of electron-ion recombination the infinite limit to the energy E in (4.7) is replaced® by
En = (2m/M)(e®/R) so that the low density rate (4.7) is,

T Ro Ro €mi
ap = XRO/ dR'j[ ds,/ ee” ¢ de(1+ R./eRy), (B24)
0 t] 0

where here ¢ = E/kT. This reduces to first order in (m/M) to,

Ro Ro
g = v2m [kT]/ de ds (B25)

which, for the low-energy parabolic motion involves,

R
°d 1
2 E’ = 4lntan J (v +60), (B26)

the average of & over each trajectory rather than the path length (B15). Hence (B25) reduces to

LT A B27)
MEETUNN\RT) O (

for collisional electron-ion recombination, in exact agreement with the energy-diffusion result of Pitaevskii'”
when Ry = %Re the Thomson radius.

For the general case of ion-ion recombination the averaged path length (B21) is required but direct use
of (B9) appears prohibitive. On using (B11) however, for the transformation p — R, at constant E, then

1 P Ro 4 Ro Ra .
C(EiRo) = — / dp? ]{ do =4 / (Ro+a)dR [ f(R,R)dR (B28)
Po Jo \ Po Jo R,
where for a Coulomb interaction V.(R),
(R+4a)?~a?
(R +a)® - (R, +a)?

is the integrand of (B3) expressed in terms of R, rather than ¢. On interchanging the order of integrations,
then (B28) reduces to,

F(R,R) = (B29)

Ro
L(E; Ro) = / dR / (R, +0)f(R, R.)dR, (B30)

which is in a form amenable to elementary integration. Thus,
py=3 3Vc(Ro)>/ Vc(Ro))
L(E; Ry) = gRo(l 3T F (1 5 (B31)

General V(R): The result (B31) above is but a particular case of the following result for general V(R).
On interchanging the order of integrations in (B21) with (B1) then

1 pﬁ Ry R” P".(R) as,
C(E;Ro) = . / dp* ¢ ds, = f [ ]d ? (B32)
0JO

R,

The trajectories which access R have impact parameters p in the range 0 < p < p,,(R) where,
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®) = (1-25) (833)

ds; Pm(R)
—| = —m—— B34
- .
from (B2), the inner integral of (B32) is simply 2pZ, so that,
4 [Fo
L(E;Ro) = = / P, (R)dR, (B35)
Po Jo
to give
L(E; Ro) = [ 4 ]/R R? (1 M) dR (B36)
T R (- V(R)/E) o E

as the p-averaged path length for general V(R). This valuable expression yields (B31) for Coulombic
attraction is applicable to all V(R) and agrees with equation (4.9) of text.

References

1. M. R. Flannery and E. J. Mansky, J. Chem. Phys. 88 4228 (1988).
R. Flannery, J. Chem. Phys. 89 214 (1988).

R. Flannery, J. Chem. Phys. 87 6847 (1987).

R. Flannery and E. J. Mansky, J. Chem. Phys. 89 4086 (1988).
R.

. M.
.M.
. M.
. D. R. Bates and C. S. McKibbin, Proc. Roy. Soc. (Lond.) A 339 13

—
©
[N

~

7
R Flannery, Phil. Trans. Roy. Soc. (Lond.) A 804 447 (1982).

Naumann, Physica A 150 627 (1988).

R. Flannery, J. Phys. B: At. Mol. Phys. 20 4929 (1987).

R. Flannery, J. Phys. B: At. Mol. Phys. 18 L839 (1985).

R. Bates and W. L. Morgan, Phys. Rev. Lett. 64 2258 (1990).

P. Mezyk, R. Cooper and J. Sherwell, J. Phys. Chem. 93 8187

hdt—iwmﬂ@’\c‘vkww

.M.
. W,
. M.
. M.
. D.
. S

o—aO

(1989),
12. R. J. DiPerna and P. L. Lions, Annals of Math. 130 321 (1989).
13. J. J. Thomson, Phil. Mag. 47 337 (1924).
14. L. B. Loeb, Basic Processes of Gaseous Electronics, The Univ. Cal.
Press (Berkeley) 1955, Chap. 5
15. G. L. Natanson, Sov. Phys.- Tech. Phys, 4 1263 (1959).
16. D. R. Bates, J. Phys. B: At. Mol. Phys. 13 2587 (1980).
17. L. P. Pitaevskii, Sov. Phys. - JETP 15 919 (1962).
18. S. B. Byron, R. C. Stabler and P. I. Bortz, Phys. Rev. Lett. 8 376 (1962).
19. D. R. Bates and I. Mendas, Proc. Roy. Soc. (Lond.) A 859 275 (1978).
20. D. R. Bates and M. R. Flannery, J. Phys. B: At. Mol. Phys. 2 184 (1969).
21. M. R. Flannery and E. J. Mansky, Chem. Phys. 182 115 (1989).
22. D. R. Bates and C. S. McKibbin, J. Phys. B: At. Mol. Phys. 6 2485 (1973).
23. L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press , 3"¢ Edition, New York 1980,
Chap. 3
24. M. R. Flannery, n preparation



Figure Captions

Figure 1a-b. (a) Probability P4(Ry, E;)), equation (3.27), for collision of an ion in a hyperbolic
(Coulomb) trajectory with the gas within a sphere of radius Ry = 0.4R, as a function of reduced gas density
X = Ro/A at various reduced Coulomb-orbit energies ¢ = E/kT; (b) Dotted curve: E-averaged probability
PA(Rg; )), equation (3.28), and P4(Ry, kT;)). Solid lines are parabolic (¢ = 0) and rectilinear (¢ — oo)
envelopes to the collision probabilities, equations (3.34) and (3.31), respectively. Inset figure: E-variation
between envelopes at low gas density. The ion-pairs here are notin L-equilibrium.

Figure 2. Collision Probability PA(Ro, E = kT;)) as a function of radius Ro for: (a) a fized gas
density with A = R,, and (b) for various gas densities proportional to f. Inset figure: P initially increases
linearly with R, along parabolic envelope and with further increase of Ry tends ultimately to the straight-line
envelope.

Figure 3. The recombination rate ay /(37R3 %) versus: (a) transition-state energy eo = E/kT, or (b)

reaction radius ro = Ro/R. = 1/¢o.

Figure 4. Analytic Probabilities PA(Ro, E), equation (6.23) for Coulomb Association within a sphere
of radius Ry = 0.4R. as a function of reduced gas density X = Ro/A. Parabolic (equation (6.26)) and
rectilinear (equation (6.27)) limits ¢ = 0 and ¢ = oo, respectively. Note that L2-equilibrium is assumed.

Figure 5. Comparison of E-averaged association probabilities as a function of reduced gas density
X = Ro/) for ions with (lower curve) and without (upper curve) L*-equilibrium.
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Figure la-b. (a) Probability P*(Ro., E; ), equation (3.27), for collision of an ion in a hyperbolic
(Coulomb) trajectory with the gas within a sphere of radius Ro = 0.4R, as a function of reduced gas density
X = Rq/A at various reduced Coulomb-orbit energies e = E/kT; (b) Dotted curve: E-averaged probability
PA(Ro; A), equation (3.28), and P#(Rq,kT;A). Solid lines are parabolic (¢ = 0) and rectilinear (¢ — )
envelopes to the collision probabilities, equations (3.34) and (3.31), respectively. Inset figure: E-variation
between envelopes at low gas density. The ion-pairs here are not in L*-equilibrium.
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Figure la-b. (a) Probability P#(Ro. E;)), equation (3.27), for collision of an ion in a hyperbolic
(Coulomb) trajectory with the gas within a sphere of radius Ro = 0.4R. as a function of reduced gas density
X = Ro/A at various reduced Coulomb-orbit energies ¢ = E/kT; (b) Dotted curve: E-averaged probability
P4(Ro; A), equation (3.28), and P#(Ro, kT;A). Solid lines are parabolic (¢ = 0) and rectilinear (¢ — x)
envelopes to the collision probabilities, equations (3.34) and (3.31), respectively. Inset figure: E-vanation
between envelopes at low gas density. The ion-pairs here are not in L3-equilibrium
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Figure 2. Collision Probability PA(Ro.E = kT;)) as a function of radius Ro for: (a) a fized gas
density with A = R,, and (b) for various gas densities proportional to f. Inset figure; P initially increases
linearly with R, along parabolic envelope and with further increase of Ry tends ultimately to the straight-line

envelope.
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Figure 2. Collision Probability PA(Ro. E = kT:)) as a function of radius Ro for: (a) a fized gas
density with A = R., and (b) for various gas densities proportional to f. Inset figure: P initially increases

linearly with Ro along parabolic envelope and with further increase of R, tends ultimately to the straight-line
envelope.
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Figure 4. Analytical Probabilities P#(Ro. E), equation (6.23) for Coulomb Association within a sphere
of radius Ro = 0.4R. as a function of reduced gas density X = Ro/\ fot various ¢. Parabolic (equation
(6.26)) and rectilinear (equation (6.27)) limits ¢ =0 and ¢ = oo, espectively. Note that L*-equilibrium is

assumed.
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